Suppr超能文献

基于弱监督局部表示的少样本字体生成

Few-Shot Font Generation With Weakly Supervised Localized Representations.

作者信息

Park Song, Chun Sanghyuk, Cha Junbum, Lee Bado, Shim Hyunjung

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Mar;46(3):1479-1495. doi: 10.1109/TPAMI.2022.3196675. Epub 2024 Feb 6.

Abstract

Automatic few-shot font generation aims to solve a well-defined, real-world problem because manual font designs are expensive and sensitive to the expertise of designers. Existing methods learn to disentangle style and content elements by developing a universal style representation for each font style. However, this approach limits the model in representing diverse local styles because it is unsuitable for complicated letter systems. For example, Chinese characters consist of a varying number of components (often called "radical") with a highly complex structure. In this paper, we propose a novel font generation method that learns localized styles, namely component-wise style representations, instead of universal styles. The proposed style representations enable synthesizing complex local details in text designs. However, learning component-wise styles solely from a few reference glyphs is infeasible when a target script has a large number of components, for example, over 200 for Chinese. To reduce the number of required reference glyphs, we represent component-wise styles by a product of component and style factors inspired by low-rank matrix factorization. Owing to the combination of strong representation and a compact factorization strategy, our method shows remarkably better few-shot font generation results (with only eight reference glyphs) than other state-of-the-art methods. Moreover, strong locality supervision was not utilized, such as the location of each component, skeleton, or strokes. The source code is available at https://github.com/clovaai/lffont.

摘要

自动少样本字体生成旨在解决一个明确的现实世界问题,因为手动字体设计成本高昂且对设计师的专业知识要求较高。现有方法通过为每种字体样式开发通用的样式表示来学习分离样式和内容元素。然而,这种方法在表示多样的局部样式方面存在局限性,因为它不适用于复杂的字母系统。例如,汉字由数量不等的部件(通常称为“部首”)组成,结构非常复杂。在本文中,我们提出了一种新颖的字体生成方法,该方法学习局部样式,即逐部件的样式表示,而不是通用样式。所提出的样式表示能够在文本设计中合成复杂局部细节。然而,当目标文字有大量部件时,仅凭少数参考字形学习逐部件样式是不可行的,例如,汉字的部件数量超过200个。为了减少所需参考字形的数量,我们受低秩矩阵分解启发,通过部件因子和样式因子的乘积来表示逐部件样式。由于强大的表示能力与紧凑的分解策略相结合,我们的方法在少样本字体生成结果(仅使用八个参考字形)方面比其他现有方法显著更好。此外,我们没有使用强大的局部性监督,如每个部件的位置、骨架或笔画。源代码可在https://github.com/clovaai/lffont获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验