Suppr超能文献

基于交互作用的孟德尔随机化分析:同时考虑有测量和无测量的基因-协变量交互作用。

Interaction-based Mendelian randomization with measured and unmeasured gene-by-covariate interactions.

机构信息

Population Health Sciences, University of Bristol, Bristol, United Kingdom.

Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil.

出版信息

PLoS One. 2022 Aug 10;17(8):e0271933. doi: 10.1371/journal.pone.0271933. eCollection 2022.

Abstract

Studies leveraging gene-environment (GxE) interactions within Mendelian randomization (MR) analyses have prompted the emergence of two similar methodologies: MR-GxE and MR-GENIUS. Such methods are attractive in allowing for pleiotropic bias to be corrected when using individual instruments. Specifically, MR-GxE requires an interaction to be explicitly identified, while MR-GENIUS does not. We critically examine the assumptions of MR-GxE and MR-GENIUS in the absence of a pre-defined covariate, and propose sensitivity analyses to evaluate their performance. Finally, we explore the effect of body mass index (BMI) upon systolic blood pressure (SBP) using data from the UK Biobank, finding evidence of a positive effect of BMI on SBP. We find both approaches share similar assumptions, though differences between the approaches lend themselves to differing research settings. Where a suitable gene-by-covariate interaction is observed MR-GxE can produce unbiased causal effect estimates. MR-GENIUS can circumvent the need to identify interactions, but as a consequence relies on either the MR-GxE assumptions holding globally, or additional information with respect to the distribution of pleiotropic effects in the absence of an explicitly defined interaction covariate.

摘要

利用孟德尔随机化(MR)分析中的基因-环境(GxE)相互作用进行的研究促使两种类似的方法出现:MR-GxE 和 MR-GENIUS。这些方法在使用个体工具时可以纠正多效性偏差,因此很有吸引力。具体来说,MR-GxE 需要明确识别相互作用,而 MR-GENIUS 则不需要。我们在没有预定义协变量的情况下,对 MR-GxE 和 MR-GENIUS 的假设进行了批判性检查,并提出了敏感性分析来评估它们的性能。最后,我们使用英国生物库的数据探索了体重指数(BMI)对收缩压(SBP)的影响,发现 BMI 对 SBP 有正向影响的证据。我们发现这两种方法都有相似的假设,尽管这些方法之间的差异使它们适用于不同的研究环境。在观察到合适的基因-协变量相互作用的情况下,MR-GxE 可以产生无偏的因果效应估计。MR-GENIUS 可以避免识别相互作用的需要,但因此依赖于 MR-GxE 假设在全球范围内成立,或者在没有明确定义的相互作用协变量的情况下,依赖于关于多效性效应分布的其他信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e26a/9365161/65daf72d8b77/pone.0271933.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验