Suppr超能文献

使用工具变量估计非线性暴露-结局关系的半参数方法及其在孟德尔随机化中的应用。

Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization.

作者信息

Staley James R, Burgess Stephen

机构信息

Strangeways Research Laboratory, Department of Public Health and Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, United Kingdom.

出版信息

Genet Epidemiol. 2017 May;41(4):341-352. doi: 10.1002/gepi.22041. Epub 2017 Mar 20.

Abstract

Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure-outcome relationship) is linear. However, in practice, this assumption may not hold. Indeed, often the primary question of interest is to assess the shape of this relationship. We present two novel IV methods for investigating the shape of the exposure-outcome relationship: a fractional polynomial method and a piecewise linear method. We divide the population into strata using the exposure distribution, and estimate a causal effect, referred to as a localized average causal effect (LACE), in each stratum of population. The fractional polynomial method performs metaregression on these LACE estimates. The piecewise linear method estimates a continuous piecewise linear function, the gradient of which is the LACE estimate in each stratum. Both methods were demonstrated in a simulation study to estimate the true exposure-outcome relationship well, particularly when the relationship was a fractional polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise linear method). The methods were used to investigate the shape of relationship of body mass index with systolic blood pressure and diastolic blood pressure.

摘要

孟德尔随机化,即使用基因变异作为工具变量(IV),可以检验并估计暴露因素对结局的因果效应。大多数IV方法假定暴露因素与结局期望值之间的函数关系(暴露-结局关系)是线性的。然而,在实际中,这一假设可能并不成立。实际上,通常感兴趣的首要问题是评估这种关系的形式。我们提出了两种用于研究暴露-结局关系形式的新型IV方法:分数多项式方法和分段线性方法。我们利用暴露分布将总体划分为不同层次,并在每个总体层次中估计一种因果效应,称为局部平均因果效应(LACE)。分数多项式方法对这些LACE估计值进行元回归分析。分段线性方法估计一个连续的分段线性函数,其斜率就是每个层次中的LACE估计值。在一项模拟研究中,两种方法都被证明能够很好地估计真实的暴露-结局关系,特别是当关系为分数多项式(对于分数多项式方法)或分段线性(对于分段线性方法)时。这些方法被用于研究体重指数与收缩压和舒张压之间关系的形式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2bd/5412689/ffa4e3fbb454/GEPI-41-341-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验