通过深度学习量化预测培西他科兰在地图样萎缩中的地形疾病进展和治疗反应。

Predicting Topographic Disease Progression and Treatment Response of Pegcetacoplan in Geographic Atrophy Quantified by Deep Learning.

作者信息

Vogl Wolf-Dieter, Riedl Sophie, Mai Julia, Reiter Gregor S, Lachinov Dmitrii, Bogunović Hrvoje, Schmidt-Erfurth Ursula

机构信息

Department of Ophthalmology, Medical University of Vienna, Austria.

Department of Ophthalmology, Medical University of Vienna, Austria.

出版信息

Ophthalmol Retina. 2023 Jan;7(1):4-13. doi: 10.1016/j.oret.2022.08.003. Epub 2022 Aug 7.

Abstract

PURPOSE

To identify disease activity and effects of intravitreal pegcetacoplan treatment on the topographic progression of geographic atrophy (GA) secondary to age-related macular degeneration quantified in spectral-domain OCT (SD-OCT) by automated deep learning assessment.

DESIGN

Retrospective analysis of a phase II clinical trial study evaluating pegcetacoplan in GA patients (FILLY, NCT02503332).

SUBJECTS

SD-OCT scans of 57 eyes with monthly treatment, 46 eyes with every-other-month (EOM) treatment, and 53 eyes with sham injection from baseline and 12-month follow-ups were included, in a total of 312 scans.

METHODS

Retinal pigment epithelium loss, photoreceptor (PR) integrity, and hyperreflective foci (HRF) were automatically segmented using validated deep learning algorithms. Local progression rate (LPR) was determined from a growth model measuring the local expansion of GA margins between baseline and 1 year. For each individual margin point, the eccentricity to the foveal center, the progression direction, mean PR thickness, and HRF concentration in the junctional zone were computed. Mean LPR in disease activity and treatment effect conditioned on these properties were estimated by spatial generalized additive mixed-effect models.

MAIN OUTCOME MEASURES

LPR of GA, PR thickness, and HRF concentration in μm.

RESULTS

A total of 31,527 local GA margin locations were analyzed. LPR was higher for areas with low eccentricity to the fovea, thinner PR layer thickness, or higher HRF concentration in the GA junctional zone. When controlling for topographic and structural risk factors, we report on average a significantly lower LPR by -28.0% (95% confidence interval [CI], -42.8 to -9.4; P = 0.0051) and -23.9% (95% CI, -40.2 to -3.0; P = 0.027) for monthly and EOM-treated eyes, respectively, compared with sham.

CONCLUSIONS

Assessing GA progression on a topographic level is essential to capture the pathognomonic heterogeneity in individual lesion growth and therapeutic response. Pegcetacoplan-treated eyes showed a significantly slower GA lesion progression rate compared with sham, and an even slower growth rate toward the fovea. This study may help to identify patient cohorts with faster progressing lesions, in which pegcetacoplan treatment would be particularly beneficial. Automated artificial intelligence-based tools will provide reliable guidance for the management of GA in clinical practice.

摘要

目的

通过自动深度学习评估,确定玻璃体内注射培西加可普蓝治疗对年龄相关性黄斑变性继发的地图样萎缩(GA)在光谱域光学相干断层扫描(SD-OCT)中量化的地形进展的疾病活动和影响。

设计

对一项评估培西加可普蓝治疗GA患者的II期临床试验研究(FILLY,NCT02503332)进行回顾性分析。

研究对象

纳入了57只每月接受治疗的眼睛、46只每两个月接受治疗的眼睛以及53只接受假注射的眼睛的SD-OCT扫描图像,扫描时间为基线期和12个月随访期,共312次扫描。

方法

使用经过验证的深度学习算法自动分割视网膜色素上皮损失、光感受器(PR)完整性和高反射灶(HRF)。局部进展率(LPR)由一个生长模型确定,该模型测量基线期和1年之间GA边缘的局部扩展。对于每个单独的边缘点,计算到黄斑中心的偏心度、进展方向、平均PR厚度以及连接区的HRF浓度。通过空间广义相加混合效应模型估计基于这些属性的疾病活动和治疗效果中的平均LPR。

主要观察指标

GA的LPR、PR厚度和HRF浓度(单位:μm)。

结果

共分析了31,527个局部GA边缘位置。在GA连接区中,与黄斑中心偏心度低、PR层厚度薄或HRF浓度高的区域相比,LPR更高。在控制地形和结构风险因素后,我们报告每月和每两个月接受治疗的眼睛与假注射组相比,平均LPR分别显著降低-28.0%(95%置信区间[CI],-42.8至-9.4;P = 0.0051)和-23.9%(95%CI,-40.2至-3.0;P = 0.027)。

结论

在地形水平上评估GA进展对于捕捉个体病变生长和治疗反应中的特征性异质性至关重要。与假注射组相比,接受培西加可普蓝治疗的眼睛显示GA病变进展速度明显较慢,且向黄斑方向的生长速度甚至更慢。本研究可能有助于识别病变进展较快的患者队列,在这些队列中培西加可普蓝治疗可能特别有益。基于人工智能的自动化工具将为临床实践中GA的管理提供可靠指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索