Suppr超能文献

探究聚乙烯微塑料对废水生物电化学厌氧消化中甲烷回收影响的研究。

Insights into the impact of polyethylene microplastics on methane recovery from wastewater via bioelectrochemical anaerobic digestion.

机构信息

Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.

Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.

出版信息

Water Res. 2022 Aug 1;221:118844. doi: 10.1016/j.watres.2022.118844. Epub 2022 Jul 9.

Abstract

Bioelectrochemical anaerobic digestion (BEAD) is a promising next-generation technology for simultaneous wastewater treatment and bioenergy recovery. While knowledge on the inhibitory effect of emerging pollutants, such as microplastics, on the conventional wastewater anaerobic digestion processes is increasing, the impact of microplastics on the BEAD process remains unknown. This study shows that methane production decreased by 30.71% when adding 10 mg/L polyethylene microplastics (PE-MP) to the BEAD systems. The morphology of anaerobic granular sludge, which was the biocatalysts in the BEAD, changed with microbes shedding and granule crack when PE-MP existed. Additionally, the presence of PE-MP shifted the microbial communities, leading to a lower diversity but higher richness and tight clustering. Moreover, fewer fermentative bacteria, acetogens, and hydrogenotrophic methanogens (BEAD enhanced) grew under PE-MP stress, suggesting that PE-MP had an inhibitory effect on the methanogenic pathways. Furthermore, the abundance of genes relevant to extracellular electron transfer (omcB and mtrC) and methanogens (hupL and mcrA) decreased. The electron transfer efficiency reduced with extracellular cytochrome c down and a lower electron transfer system activity. Finally, phylogenetic investigation of communities by reconstruction of unobserved states analysis predicted the decrease of key methanogenic enzymes, including EC 1.1.1.1 (Alcohol dehydrogenase), EC 1.2.99.5 (Formylmethanofuran dehydrogenase), and EC 2.8.4.1 (Coenzyme-B sulfoethylthiotransferase). Altogether, these results provide insight into the inhibition mechanism of microplastics in wastewater methane recovery and further optimisation of the BEAD process.

摘要

生物电化学厌氧消化(BEAD)是一种很有前途的新一代技术,可用于同时进行废水处理和生物能源回收。虽然人们对新兴污染物(如微塑料)对传统废水厌氧消化过程的抑制作用的了解在不断增加,但微塑料对 BEAD 过程的影响尚不清楚。本研究表明,当向 BEAD 系统中添加 10mg/L 的聚乙烯微塑料(PE-MP)时,甲烷产量下降了 30.71%。作为 BEAD 中生物催化剂的厌氧颗粒污泥的形态发生了变化,当存在 PE-MP 时,微生物脱落和颗粒破裂。此外,PE-MP 改变了微生物群落,导致多样性降低,但丰富度和聚类程度更高。此外,在 PE-MP 胁迫下,较少的发酵细菌、产乙酸菌和氢营养型产甲烷菌(BEAD 增强)生长,这表明 PE-MP 对产甲烷途径具有抑制作用。此外,与细胞外电子转移(omcB 和 mtrC)和产甲烷菌(hupL 和 mcrA)相关的基因丰度下降。电子转移效率随着细胞外细胞色素 c 的减少和电子传递系统活性的降低而降低。最后,通过未观察到状态重建分析的群落系统发育调查预测,关键产甲烷酶的含量下降,包括 EC 1.1.1.1(醇脱氢酶)、EC 1.2.99.5(甲酰甲硫氨酸脱氢酶)和 EC 2.8.4.1(辅酶-B 亚硫酸乙基硫转移酶)。总之,这些结果深入了解了微塑料在废水甲烷回收中的抑制机制,并进一步优化了 BEAD 工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验