营养三角学II:在多维性能格局中最大化营养信息的实验策略。

Nutrigonometry II: Experimental strategies to maximize nutritional information in multidimensional performance landscapes.

作者信息

Morimoto Juliano

机构信息

Institute of Mathematics King's College, University of Aberdeen Aberdeen UK.

School of Biological Sciences University of Aberdeen Aberdeen UK.

出版信息

Ecol Evol. 2022 Aug 4;12(8):e9174. doi: 10.1002/ece3.9174. eCollection 2022 Aug.

Abstract

Animals regulate their nutrient consumption to maximize the expression of fitness traits with competing nutritional needs ("nutritional trade-offs"). Nutritional trade-offs have been studied using a response surface modeling approach known as the Geometric Framework for nutrition (GF). Current experimental design in GF studies does not explore the entire area of the nutritional space resulting in performance landscapes that may be incomplete. This hampers our ability to understand the properties of the performance landscape (e.g., peak shape) from which meaningful biological insights can be obtained. Here, I tested alternative experimental designs to explore the full range of the performance landscape in GF studies. I compared the performance of the standard GF design strategy with three alternatives: hexagonal, square, and random points grid strategies with respect to their accuracy in reconstructing baseline performance landscapes from a landmark GF dataset. I showed that standard GF design did not reconstruct the properties of baseline performance landscape appropriately particularly for traits that respond strongly to the interaction between nutrients. Moreover, the peak estimates in the reconstructed performance landscape using standard GF design were accurate in terms of the nutrient ratio but incomplete in terms of peak shape. All other grid designs provided more accurate reconstructions of the baseline performance landscape while also providing accurate estimates of nutrient ratio and peak shape. Thus, alternative experimental designs can maximize information from performance landscapes in GF studies, enabling reliable biological insights into nutritional trade-offs and physiological limits within and across species.

摘要

动物会调节其营养物质的摄入量,以在具有相互竞争的营养需求(“营养权衡”)的情况下,使适应性特征的表达最大化。营养权衡已通过一种称为营养几何框架(GF)的响应面建模方法进行了研究。GF研究中的当前实验设计并未探索营养空间的整个区域,从而导致性能景观可能不完整。这妨碍了我们理解性能景观的特性(例如峰值形状)的能力,而从这些特性中可以获得有意义的生物学见解。在此,我测试了替代实验设计,以探索GF研究中性能景观的全范围。我将标准GF设计策略的性能与三种替代策略进行了比较:六边形、正方形和随机点网格策略,比较了它们从一个标志性GF数据集中重建基线性能景观的准确性。我发现标准GF设计不能适当地重建基线性能景观的特性,特别是对于那些对营养物质之间的相互作用反应强烈的性状。此外,使用标准GF设计重建的性能景观中的峰值估计在营养比方面是准确的,但在峰值形状方面是不完整的。所有其他网格设计都能更准确地重建基线性能景观,同时还能提供营养比和峰值形状的准确估计。因此,替代实验设计可以在GF研究中最大化从性能景观中获得的信息,从而可靠地洞察物种内部和物种之间的营养权衡和生理极限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c71c/9353123/3cb756bafdce/ECE3-12-e9174-g005.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索