School of Business Administration, Liaoning Technical University, Huludao, Liaoning, China.
College of Safety Science and Engineering, Liaoning Technical University, Huludao, Liaoning, China.
PLoS One. 2022 Aug 11;17(8):e0272767. doi: 10.1371/journal.pone.0272767. eCollection 2022.
Feature extraction of electrical load plays a vital role in providing a reliable basis and guidance for power companies. In this paper, we propose a novel clustering algorithm named the Density-based Matrix Transformation (DBMT) Clustering method to extract features (peaks, valleys and trends) of electrical load curves. The main objective of the algorithm is to reorder the data items until the data items belonging to the same cluster are organized together; that is, the adjacent matrix is rearranged to the type of block diagonal. This method adaptively determines the number of clusters and filters out noise without input global parameters. Moreover, for the specific characteristics of raw electrical load data, we propose a variant of Dynamic Time Warp (DTW) distance, dsDTW, which aligns the peaks, valleys and trends of load curves meanwhile dealing with missing values in different situations. After feeding the dsDTW adjacent matrix to DBMT, the results indicate that our proposal can accurately extract the feature of the load curves compared to different clustering methods.
标题:基于密度的矩阵变换聚类算法在电力负荷特征提取中的应用
摘要: 本文提出了一种新的聚类算法,称为基于密度的矩阵变换(DBMT)聚类方法,用于提取电力负荷曲线的特征(峰、谷和趋势)。该算法的主要目标是重新排列数据项,直到属于同一簇的数据项被组织在一起;也就是说,重新排列相邻矩阵为块状对角类型。这种方法自适应地确定聚类的数量,并且在没有输入全局参数的情况下过滤噪声。此外,针对原始电力负荷数据的具体特点,我们提出了一种动态时间规整(DTW)距离的变体,dsDTW,它对齐了负荷曲线的峰、谷和趋势,同时处理了不同情况下的缺失值。在将 dsDTW 相邻矩阵馈送到 DBMT 后,结果表明,与不同的聚类方法相比,我们的方法可以准确地提取负荷曲线的特征。