State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637002, China.
Int J Mol Sci. 2022 Aug 7;23(15):8786. doi: 10.3390/ijms23158786.
The ability of immature embryos to induce embryogenic callus (EC) is crucial for genetic transformation in maize, which is highly genotype-dependent. To dissect the genetic basis of maize EC induction, we conducted QTL mapping for four EC induction-related traits, the rate of embryogenic callus induction (REC), rate of shoot formation (RSF), length of shoot (LS), and diameter of callus (DC) under three environments by using an IBM Syn10 DH population derived from a cross of B73 and Mo17. These EC induction traits showed high broad-sense heritability (>80%), and significantly negative correlations were observed between REC and each of the other traits across multiple environments. A total of 41 QTLs for EC induction were identified, among which 13, 12, 10, and 6 QTLs were responsible for DC, RSF, LS, and REC, respectively. Among them, three major QTLs accounted for >10% of the phenotypic variation, including qLS1-1 (11.54%), qLS1-3 (10.68%), and qREC4-1 (11.45%). Based on the expression data of the 215 candidate genes located in these QTL intervals, we performed a weighted gene co-expression network analysis (WGCNA). A combined use of KEGG pathway enrichment and eigengene-based connectivity (KME) values identified the EC induction-associated module and four hub genes (Zm00001d028477, Zm00001d047896, Zm00001d034388, and Zm00001d022542). Gene-based association analyses validated that the variations in Zm00001d028477 and Zm00001d034388, which were involved in tryptophan biosynthesis and metabolism, respectively, significantly affected EC induction ability among different inbred lines. Our study brings novel insights into the genetic and molecular mechanisms of EC induction and helps to promote marker-assisted selection of high-REC varieties in maize.
不成熟胚胎诱导胚性愈伤组织(EC)的能力对玉米的遗传转化至关重要,而这高度依赖于基因型。为了剖析玉米 EC 诱导的遗传基础,我们利用来自 B73 和 Mo17 杂交的 IBM Syn10 DH 群体,在三个环境下,针对四个与 EC 诱导相关的性状(胚性愈伤组织诱导率(REC)、芽形成率(RSF)、芽长(LS)和愈伤组织直径(DC))进行了 QTL 作图。这些 EC 诱导性状表现出高的广义遗传力(>80%),并且在多个环境下,REC 与其他性状之间均呈显著负相关。共鉴定到 41 个 EC 诱导 QTL,其中 13、12、10 和 6 个 QTL 分别负责 DC、RSF、LS 和 REC。其中,三个主要 QTL 占表型变异的>10%,包括 qLS1-1(11.54%)、qLS1-3(10.68%)和 qREC4-1(11.45%)。基于位于这些 QTL 区间内的 215 个候选基因的表达数据,我们进行了加权基因共表达网络分析(WGCNA)。KEGG 途径富集和基于特征基因的连通性(KME)值的组合使用,鉴定到与 EC 诱导相关的模块和四个枢纽基因(Zm00001d028477、Zm00001d047896、Zm00001d034388 和 Zm00001d022542)。基于基因的关联分析验证了分别参与色氨酸生物合成和代谢的Zm00001d028477 和 Zm00001d034388 的变异显著影响不同自交系的 EC 诱导能力。本研究为 EC 诱导的遗传和分子机制提供了新的见解,并有助于促进玉米高 REC 品种的标记辅助选择。