Laboratoire d'Informatique et de Mathématiques, Université Amar Telidji, Laghouat 03000, Algeria.
Facultad de Ciencias Informáticas, Universidad Laica Eloy Alfaro de Manabí, Manta 130214, Ecuador.
Sensors (Basel). 2022 Aug 7;22(15):5893. doi: 10.3390/s22155893.
Remotely monitoring people's healthcare is still among the most important research topics for researchers from both industry and academia. In addition, with the Wireless Body Networks (WBANs) emergence, it becomes possible to supervise patients through an implanted set of body sensors that can communicate through wireless interfaces. These body sensors are characterized by their tiny sizes, and limited resources (power, computing, and communication capabilities), which makes these devices prone to have faults and sensible to be damaged. Thus, it is necessary to establish an efficient system to detect any fault or anomalies when receiving sensed data. In this paper, we propose a novel, optimized, and hybrid solution between machine learning and statistical techniques, for detecting faults in WBANs that do not affect the devices' resources and functionality. Experimental results illustrate that our approach can detect unwanted measurement faults with a high detection accuracy ratio that exceeds the 99.62%, and a low mean absolute error of 0.61%, clearly outperforming the existing state-of-art solutions.
远程监控人们的医疗保健仍然是工业界和学术界研究人员的最重要研究课题之一。此外,随着无线体域网 (WBAN) 的出现,通过一组可通过无线接口进行通信的植入式体传感器来监视患者成为可能。这些体传感器的特点是尺寸极小,资源有限(电源、计算和通信能力),这使得这些设备容易出现故障,并且容易损坏。因此,有必要建立一个有效的系统来检测接收感测数据时的任何故障或异常。在本文中,我们提出了一种新颖的、优化的、机器学习和统计技术相结合的混合解决方案,用于检测不会影响设备资源和功能的 WBAN 中的故障。实验结果表明,我们的方法可以以超过 99.62%的高检测准确率和 0.61%的低平均绝对误差来检测不需要的测量故障,明显优于现有的最先进解决方案。