Suppr超能文献

回顾性协调倡议的生命历程:需考虑的关键要素。

Life course of retrospective harmonization initiatives: key elements to consider.

作者信息

Fortier Isabel, Wey Tina W, Bergeron Julie, Pinot de Moira Angela, Nybo-Andersen Anne-Marie, Bishop Tom, Murtagh Madeleine J, Miočević Milica, Swertz Morris A, van Enckevort Esther, Marcon Yannick, Mayrhofer Michaela Th, Ornelas Jos Pedro, Sebert Sylvain, Santos Ana Cristina, Rocha Artur, Wilson Rebecca C, Griffith Lauren E, Burton Paul

机构信息

Research Institute of the McGill University Health Centre, Montreal, QC, Canada.

Section of Epidemiology, University of Copenhagen, Denmark.

出版信息

J Dev Orig Health Dis. 2023 Apr;14(2):190-198. doi: 10.1017/S2040174422000460. Epub 2022 Aug 12.

Abstract

Optimizing research on the developmental origins of health and disease (DOHaD) involves implementing initiatives maximizing the use of the available cohort study data; achieving sufficient statistical power to support subgroup analysis; and using participant data presenting adequate follow-up and exposure heterogeneity. It also involves being able to undertake comparison, cross-validation, or replication across data sets. To answer these requirements, cohort study data need to be findable, accessible, interoperable, and reusable (FAIR), and more particularly, it often needs to be harmonized. Harmonization is required to achieve or improve comparability of the putatively equivalent measures collected by different studies on different individuals. Although the characteristics of the research initiatives generating and using harmonized data vary extensively, all are confronted by similar issues. Having to collate, understand, process, host, and co-analyze data from individual cohort studies is particularly challenging. The scientific success and timely management of projects can be facilitated by an ensemble of factors. The current document provides an overview of the 'life course' of research projects requiring harmonization of existing data and highlights key elements to be considered from the inception to the end of the project.

摘要

优化健康与疾病的发育起源(DOHaD)研究,需要实施相关举措,以最大限度地利用现有的队列研究数据;获得足够的统计效力以支持亚组分析;并使用具有充分随访和暴露异质性的参与者数据。这还涉及能够对不同数据集进行比较、交叉验证或重复研究。为满足这些要求,队列研究数据需要具备可查找、可访问、可互操作和可重复使用(FAIR)的特性,更具体地说,通常还需要进行数据整合。进行数据整合是为了实现或提高不同研究针对不同个体所收集的假定等效测量指标的可比性。尽管生成和使用整合数据的研究项目特点差异很大,但它们都面临类似的问题。整理、理解、处理、存储和共同分析来自各个队列研究的数据尤其具有挑战性。一系列因素有助于科研项目取得成功并及时进行管理。本文件概述了需要整合现有数据的研究项目的“生命历程”,并强调了从项目启动到结束需考虑的关键要素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验