文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全面的改变相关转录组学特征与膀胱癌的免疫浸润相关,并与预后和免疫治疗反应相关。

Comprehensive alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer.

机构信息

Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Front Immunol. 2022 Jul 26;13:931906. doi: 10.3389/fimmu.2022.931906. eCollection 2022.


DOI:10.3389/fimmu.2022.931906
PMID:35958598
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9360490/
Abstract

BACKGROUND: Bladder cancer (BC) threatens the health of human beings worldwide because of its high recurrence rate and mortality. As an actionable biomarker, fibroblast growth factor receptor 3 () alterations have been revealed as a vital biomarker and associated with favorable outcomes in BC. However, the comprehensive relationship between the alteration associated gene expression profile and the prognosis of BC remains ambiguous. MATERIALS AND METHODS: Genomic alteration profile, gene expression data, and related clinical information of BC patients were downloaded from The Cancer Genomics database (TCGA), as a training cohort. Subsequently, the Weighted Gene Co-expression Network Analysis (WGCNA) was conducted to identify the hub modules correlated with alteration. The univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to obtain an alteration-related gene (FARG) prognostic signature and FARG-based nomogram. The receiver operating characteristic (ROC) curve analysis was used for evaluation of the ability of prognosis prediction. The FARG signature was validated in four independent datasets, namely, GSE13507, GSE31684, GSE32548, and GSE48075, from Gene Expression Omnibus (GEO). Then, clinical feature association analysis, functional enrichment, genomic alteration enrichment, and tumor environment analysis were conducted to reveal differential clinical and molecular characterizations in different risk groups. Lastly, the treatment response was evaluated in the immunotherapy-related dataset of the IMvigor210 cohort and the frontline chemotherapy dataset of GSE48276, and the chemo-drug sensitivity was estimated Genomics of Drug Sensitivity in Cancer (GDSC). RESULTS: There were a total of eleven genes (, , , , , , , , , , and ) identified in the FARG signature, which divided BC patients from the TCGA cohort into high- and low-risk groups. The Kaplan-Meier curve analysis demonstrated that BC patients in the low-risk group have superior overall survival (OS) than those in the high-risk group (median OS: 27.06 months . 104.65 months, < 0.0001). Moreover, the FARG signature not only showed a good performance in prognosis prediction, but also could distinguish patients with different neoplasm disease stages, notably whether patients presented with muscle invasive phenotype. Compared to clinicopathological features, the FARG signature was found to be the only independent prognostic factor, and subsequently, a FARG-based prognostic nomogram was constructed with better ability of prognosis prediction, indicated by area under ROC curve (AUC) values for 1-, 3-, and 5-year OS of 0.69, 0.71, and 0.79, respectively. Underlying the FARG signature, multiple kinds of metabolism- and immune-related signaling pathways were enriched. Genomic alteration enrichment further identified that alterations, especially c.746C>G (p.Ser249Cys), were more prevalent in the low-risk group. Additionally, FARG score was positively correlated with ESTIMATE and TIDE scores, and the low-risk group had abundant enrichment of plasma B cells, CD8+ T cells, CD4+ naive T cells, and helper follicular T cells, implying that patients in the low-risk group were likely to make significant responses to immunotherapy, which was further supported by the analysis in the IMvigor210 cohort as there was a significantly higher response rate among patients with lower FARG scores. The analysis of the GDSC database finally demonstrated that low-risk samples were more sensitive to methotrexate and tipifarnib, whereas those in the high-risk group had higher sensitivities in cisplatin, docetaxel, and paclitaxel, instead. CONCLUSION: The novel established FARG signature based on a comprehensive alteration-related transcriptomic profile performed well in prognosis prediction and was also correlated with immunotherapy and chemotherapy treatment responses, which had great potential in future clinical applications.

摘要

背景:膀胱癌(BC)因其高复发率和死亡率而威胁着全球人类的健康。作为一种可操作的生物标志物,成纤维细胞生长因子受体 3 () 改变已被揭示为重要的生物标志物,并与 BC 的良好预后相关。然而,与 BC 相关的基因表达谱的综合关系和预后仍然不清楚。

材料和方法:从癌症基因组图谱(TCGA)下载膀胱癌患者的基因组改变谱、基因表达数据和相关临床信息作为训练队列。随后,进行加权基因共表达网络分析(WGCNA)以鉴定与 改变相关的枢纽模块。使用单变量、多变量和最小绝对收缩和选择算子(LASSO)Cox 回归分析获得与 改变相关的基因(FARG)预后特征和基于 FARG 的列线图。使用接收者操作特征(ROC)曲线分析评估预后预测能力。在来自基因表达综合数据库(GEO)的四个独立数据集 GSE13507、GSE31684、GSE32548 和 GSE48075 中验证了 FARG 特征。然后,进行临床特征关联分析、功能富集、基因组改变富集和肿瘤环境分析,以揭示不同风险组的差异临床和分子特征。最后,在 IMvigor210 队列的免疫治疗相关数据集和 GSE48276 的一线化疗数据集中评估治疗反应,并使用癌症基因组药物敏感性(GDSC)估计化疗药物敏感性。

结果:在 FARG 特征中确定了 11 个基因(、、、、、、、、、和),这些基因将 TCGA 队列中的膀胱癌患者分为高风险和低风险组。Kaplan-Meier 曲线分析表明,低风险组的 BC 患者的总生存期(OS)优于高风险组(中位 OS:27.06 个月 vs 104.65 个月,<0.0001)。此外,FARG 特征不仅在预后预测方面表现良好,而且能够区分不同肿瘤疾病阶段的患者,特别是是否存在肌层浸润表型的患者。与临床病理特征相比,FARG 特征是唯一的独立预后因素,随后构建了基于 FARG 的预后列线图,其 1、3 和 5 年 OS 的 AUC 值分别为 0.69、0.71 和 0.79,具有更好的预后预测能力。在 FARG 特征的基础上,富集了多种代谢和免疫相关信号通路。基因组改变富集进一步鉴定出 改变,特别是 c.746C>G(p.Ser249Cys),在低风险组中更为常见。此外,FARG 评分与 ESTIMATE 和 TIDE 评分呈正相关,低风险组富含血浆 B 细胞、CD8+T 细胞、CD4+幼稚 T 细胞和辅助滤泡 T 细胞,这表明低风险组的患者可能对免疫治疗有明显的反应,这在 IMvigor210 队列中的分析中得到了进一步支持,因为在低风险组中患者的反应率显著更高。最后对 GDSC 数据库的分析表明,低风险样本对甲氨蝶呤和替匹法尼更敏感,而高风险组对顺铂、多西他赛和紫杉醇的敏感性更高。

结论:基于全面的 改变相关转录组谱建立的新的 FARG 特征在预后预测方面表现良好,并且与免疫治疗和化疗反应相关,在未来的临床应用中有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/b139d7531fb7/fimmu-13-931906-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/b25bd8da0a67/fimmu-13-931906-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/fe6178688be0/fimmu-13-931906-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/be88391e53fa/fimmu-13-931906-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/7c008f361239/fimmu-13-931906-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/688c512f767e/fimmu-13-931906-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/0a88cb5d5914/fimmu-13-931906-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/0fab99b3ce5d/fimmu-13-931906-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/40c9c7820cab/fimmu-13-931906-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/fd318e6bbefc/fimmu-13-931906-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/158d862bae2a/fimmu-13-931906-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/b139d7531fb7/fimmu-13-931906-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/b25bd8da0a67/fimmu-13-931906-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/fe6178688be0/fimmu-13-931906-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/be88391e53fa/fimmu-13-931906-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/7c008f361239/fimmu-13-931906-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/688c512f767e/fimmu-13-931906-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/0a88cb5d5914/fimmu-13-931906-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/0fab99b3ce5d/fimmu-13-931906-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/40c9c7820cab/fimmu-13-931906-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/fd318e6bbefc/fimmu-13-931906-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/158d862bae2a/fimmu-13-931906-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/9360490/b139d7531fb7/fimmu-13-931906-g011.jpg

相似文献

[1]
Comprehensive alteration-related transcriptomic characterization is involved in immune infiltration and correlated with prognosis and immunotherapy response of bladder cancer.

Front Immunol. 2022

[2]
Integrative transcriptional characterization of cell cycle checkpoint genes promotes clinical management and precision medicine in bladder carcinoma.

Front Oncol. 2022-8-11

[3]
Identification of a Nuclear Mitochondrial-Related Multi-Genes Signature to Predict the Prognosis of Bladder Cancer.

Front Oncol. 2021-10-6

[4]
Mitochondrial-Related Transcriptome Feature Correlates with Prognosis, Vascular Invasion, Tumor Microenvironment, and Treatment Response in Hepatocellular Carcinoma.

Oxid Med Cell Longev. 2022

[5]
Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.

BMC Cancer. 2021-7-27

[6]
Construction and validation of a bladder cancer risk model based on autophagy-related genes.

Funct Integr Genomics. 2023-1-23

[7]
Overweight/obesity-related transcriptomic signature as a correlate of clinical outcome, immune microenvironment, and treatment response in hepatocellular carcinoma.

Front Endocrinol (Lausanne). 2022

[8]
Identification and validation of a dysregulated TME-related gene signature for predicting prognosis, and immunological properties in bladder cancer.

Front Immunol. 2023

[9]
Transcriptomic correlates of cell cycle checkpoints with distinct prognosis, molecular characteristics, immunological regulation, and therapeutic response in colorectal adenocarcinoma.

Front Immunol. 2023

[10]
Derivation and Comprehensive Analysis of Aging Patterns in Patients with Bladder Cancer.

Dis Markers. 2021-10-21

引用本文的文献

[1]
Identification of a Novel Mesenchymal Stem Cell-Related Signature for Predicting the Prognosis and Therapeutic Responses of Bladder Cancer.

Stem Cells Int. 2024-11-15

[2]
FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development.

J Korean Med Sci. 2024-11-11

[3]
Improve clinical feature-based bladder cancer survival prediction models through integration with gene expression profiles and machine learning techniques.

Heliyon. 2024-9-21

[4]
Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target.

Biomark Med. 2024

[5]
OSBPL10-CNBP axis mediates hypoxia-induced pancreatic cancer development.

Biofactors. 2025

[6]
Establishment of a SUMO pathway related gene signature for predicting prognosis, chemotherapy response and investigating the role of EGR2 in bladder cancer.

J Cancer. 2024-5-20

[7]
CERCAM is a prognostic biomarker associated with immune infiltration of macrophage M2 polarization in head and neck squamous carcinoma.

BMC Oral Health. 2023-10-7

[8]
An estrogen response-related signature predicts response to immunotherapy in melanoma.

Front Immunol. 2023

[9]
Cancer-associated fibroblast-related gene signatures predict survival and drug response in patients with colorectal cancer.

Front Genet. 2022-11-25

本文引用的文献

[1]
Targeting cancer metabolism in the era of precision oncology.

Nat Rev Drug Discov. 2022-2

[2]
FGFR3 Destabilizes PD-L1 via NEDD4 to Control T-cell-Mediated Bladder Cancer Immune Surveillance.

Cancer Res. 2022-1-1

[3]
The Prognostic Value of FGFR3 Expression in Patients with T1 Non-Muscle Invasive Bladder Cancer.

Cancer Manag Res. 2021-8-20

[4]
Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience.

Br J Cancer. 2021-10

[5]
The oncogenic role of the cerebral endothelial cell adhesion molecule (CERCAM) in bladder cancer cells in vitro and in vivo.

Cancer Med. 2021-7

[6]
Dramatic Responses of Recurrent Upper Urinary Tract Urothelial Carcinoma Harboring FGFR3 and TP53 Activating Mutations to Pembrolizumab in Combination with Erdafitinib: A Case Report.

Onco Targets Ther. 2021-3-25

[7]
Advances in bladder cancer biology and therapy.

Nat Rev Cancer. 2021-2

[8]
Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance.

Br J Cancer. 2021-3

[9]
The FGFR3 Story in Bladder Cancer: Another Piece of the Puzzle?

Eur Urol. 2020-11

[10]
High expression of predicts a poor prognosis and correlates with immune infiltrates in bladder urothelial carcinoma.

Oncol Lett. 2020-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索