Suppr超能文献

肺癌转移患病率及相关因素的泛癌分析与肺转移分类系统的构建

Pan-cancer analysis of the prevalence and associated factors of lung metastasis and the construction of the lung metastatic classification system.

作者信息

Lv Xiaolong, Yang Lei, Liu Tianyu, Yang Zelin, Jia Chenhao, Chen Huanwen

机构信息

Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Surg. 2022 Jul 26;9:922167. doi: 10.3389/fsurg.2022.922167. eCollection 2022.

Abstract

This study first presents an analysis of the prevalence and associated factors of the lung metastasis (LM) database and then uses this analysis to construct an LM classification system. Using cancer patient data gathered from the surveillance, epidemiology, and end results (SEER) database, this study shows that the prevalence of LM is not consistent among different cancers; that is, the prevalence of LM ranges from 0.0013 [brain; 95% confidence interval (95% CI); 0.0010-0.0018] to 0.234 ("other digestive organs"; 95% CI; 0.221-0.249). This study finds that advanced age, poor grade, higher tumor or node stage, and metastases including bone, brain, and liver are positively related to LM occurrence, while female gender, income, marital status, and insured status are negatively related. Then, this study generates four categories from 58 cancer types based on prevalence and influence factors and satisfactorily validates these. This classification system reflects the LM risk of different cancers. It can guide individualized treatment and the management of these synchronous metastatic cancer patients and help clinicians better distribute medical resources.

摘要

本研究首先对肺转移(LM)数据库的患病率及相关因素进行分析,然后利用该分析构建LM分类系统。本研究使用从监测、流行病学和最终结果(SEER)数据库收集的癌症患者数据,结果表明,不同癌症的LM患病率不一致;即,LM患病率范围从0.0013[脑;95%置信区间(95%CI);0.0010 - 0.0018]到0.234(“其他消化器官”;95%CI;0.221 - 0.249)。本研究发现,高龄、低分级、较高的肿瘤或淋巴结分期以及包括骨、脑和肝在内的转移与LM发生呈正相关,而女性性别、收入、婚姻状况和参保状况与LM发生呈负相关。然后,本研究根据患病率和影响因素将58种癌症类型分为四类,并对其进行了令人满意的验证。该分类系统反映了不同癌症的LM风险。它可以指导个体化治疗以及对这些同步转移性癌症患者的管理,并帮助临床医生更好地分配医疗资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2566/9360507/1fcac55bc9ee/fsurg-09-922167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验