Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain.
The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel.
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):37270-37279. doi: 10.1021/acsami.2c05443. Epub 2022 Aug 12.
In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.
近年来,由于其内在的抗菌和抗氧化特性,以及可生物降解性和生物相容性,木质素在不同的应用中引起了越来越多的关注。然而,通常需要对其进行化学修饰或与金属结合,以提高其抗菌功能,并生产用于需要避免细菌生长的应用的生物基附加值材料,例如生物医学和食品工业。在这项工作中,开发了一种超声酶法方法,用于木质素的同时功能化和纳米转化,以制备无金属抗菌酚化木质素纳米颗粒(PheLigNPs)。单宁酸是一种天然酚类化合物,通过使用漆酶氧化在高强度超声作用下将木质素重新排列成 NPs 的环保方法接枝到木质素上。与非功能化的 LigNPs 和大块形式的酚化木质素相比,PheLigNPs 表现出更高的抗菌活性,这表明酚含量和纳米尺寸都对其抗菌活性有贡献。对作用机制的抗菌研究表明,与功能化 NPs 接触的细菌表现出代谢活性降低和高水平的活性氧(ROS)。此外,PheLigNPs 表现出对细菌表面的亲和力和导致膜不稳定的能力。抗微生物耐药性研究表明,与传统抗生素不同,这些 NPs 不会诱导病原菌产生耐药性。