Zhang Hui, Pei Meng, Liu Boyang, Wang Zongli, Zhao Xu
Department of Physics, Zhejiang University, Hangzhou 310027, China.
School of Physics, Henan Normal University, Xinxiang, Henan 453007, China.
Phys Chem Chem Phys. 2022 Aug 24;24(33):19853-19864. doi: 10.1039/d2cp02559k.
The structure and electronic properties of the MoSe/PtS van der Waals heterostructure and their dependence on the interlayer coupling, biaxial strain and external electric field are systematically investigated by using first-principles calculations. Herein, six stacking patterns are taken into consideration. The most energy favorable one is the AC stacking pattern, which is an indirect band gap semiconductor with type-I band alignment. The interlayer coupling, biaxial strain and external electric field can not only tune the band alignment of the MoSe/PtS heterostructure from type-I band alignment to the type-II one, but also effectively modulate the band gap, ranging from 0 eV to 0.805 eV. These interesting properties induced by interlayer charge transfer, such as tunable band gaps and the characteristic of type-II band alignment, are beneficial for the application of the 2D MoSe/PtS van der Waals heterostructure in future electronic and optoelectronic devices.
通过第一性原理计算,系统地研究了MoSe/PtS范德华异质结构的结构和电子性质及其对层间耦合、双轴应变和外电场的依赖性。本文考虑了六种堆叠模式。能量最有利的一种是AC堆叠模式,它是具有I型能带排列的间接带隙半导体。层间耦合、双轴应变和外电场不仅可以将MoSe/PtS异质结构的能带排列从I型能带排列调节为II型能带排列,还可以有效地调制带隙,范围从0 eV到0.805 eV。由层间电荷转移引起的这些有趣特性,如可调带隙和II型能带排列特性,有利于二维MoSe/PtS范德华异质结构在未来电子和光电器件中的应用。