Tang Weijian, Li Afei, Zhou Guojun, Chen Zhangxian, Yang Zeheng, Su Jianhui, Zhang Weixin
School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei, Anhui 230009, China.
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, China.
ACS Appl Mater Interfaces. 2022 Aug 31;14(34):38865-38874. doi: 10.1021/acsami.2c10652. Epub 2022 Aug 12.
Cation-disordered rock-salt cathode materials are featured by their extraordinarily high specific capacities in lithium-ion batteries primarily contributed by anion redox reactions. Unfortunately, anion redox reactions can trigger oxygen release in this class of materials, leading to fast capacity fading and major safety concern. Despite the capability of absorbing structural distortions, high-ratio d transition-metal cations are considered to be unfavorable in design of a new cation-disordered rock-salt structure because of their electrochemically inactive nature. Herein, we report a new cation-disordered rock-salt compound of LiTiMnO with the stoichiometry of Ti as high as 0.6. The capacity reducing effect by the low-ratio active transition-metal center can be balanced by using a Mn/Mn two-electron redox couple. The strengthened networks of strong Ti-O bonds greatly retard the oxygen release and improve the structural stability of cation-disordered rock-salt cathode materials. As expected, LiTiMnO delivers significantly improved electrochemical performances and thermal stability compared to the low-ratio Ti counterpart of LiTiMnO. Theoretical simulations further reveal that the improved electrochemical performances of LiTiMnO are attributed to its lower Li diffusion energy barrier and enhanced unhybridized O 2p states compared to LiTiMnO. This concept might be helpful for the improvement of structural stability and electrochemical performances of other cation-disordered rock-salt metal oxide cathode materials.
阳离子无序岩盐正极材料的特点是在锂离子电池中具有极高的比容量,这主要归因于阴离子氧化还原反应。不幸的是,阴离子氧化还原反应会引发这类材料中的氧释放,导致容量快速衰减并引发重大安全问题。尽管具有吸收结构畸变的能力,但高比例的d过渡金属阳离子由于其电化学惰性本质,在设计新型阳离子无序岩盐结构时被认为是不利的。在此,我们报道了一种化学计量比高达0.6的新型阳离子无序岩盐化合物LiTiMnO。低比例活性过渡金属中心的容量降低效应可以通过使用Mn/Mn双电子氧化还原对来平衡。强化的强Ti-O键网络极大地阻碍了氧释放,并提高了阳离子无序岩盐正极材料的结构稳定性。正如预期的那样,与低比例Ti的LiTiMnO相比,LiTiMnO具有显著改善的电化学性能和热稳定性。理论模拟进一步表明,LiTiMnO电化学性能的改善归因于其与LiTiMnO相比更低的Li扩散能垒和增强的未杂化O 2p态。这一概念可能有助于改善其他阳离子无序岩盐金属氧化物正极材料的结构稳定性和电化学性能。