Suppr超能文献

通过联合训练和精细分割实现超声图像中乳腺肿瘤的精确分割。

Accurate segmentation of breast tumor in ultrasound images through joint training and refined segmentation.

机构信息

The College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, People's Republic of China.

The College of Medicine and Biological Information Engineering, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.

出版信息

Phys Med Biol. 2022 Sep 2;67(17). doi: 10.1088/1361-6560/ac8964.

Abstract

This paper proposes an automatic breast tumor segmentation method for two-dimensional (2D) ultrasound images, which is significantly more accurate, robust, and adaptable than common deep learning models on small datasets.A generalized joint training and refined segmentation framework (JR) was established, involving a joint training module () and a refined segmentation module (). In, two segmentation networks are trained simultaneously, under the guidance of the proposed Jocor for Segmentation (JFS) algorithm. In, the output ofis refined by the proposed area first (AF) algorithm, and marked watershed (MW) algorithm. The AF mainly reduces false positives, which arise easily from the inherent features of breast ultrasound images, in the light of the area, distance, average radical derivative (ARD) and radical gradient index (RGI) of candidate contours. Meanwhile, the MW avoids over-segmentation, and refines segmentation results. To verify its performance, the JR framework was evaluated on three breast ultrasound image datasets. Image dataset A contains 1036 images from local hospitals. Image datasets B and C are two public datasets, containing 562 images and 163 images, respectively. The evaluation was followed by related ablation experiments.The JR outperformed the other state-of-the-art (SOTA) methods on the three image datasets, especially on image dataset B. Compared with the SOTA methods, the JR improved true positive ratio (TPR) and Jaccard index (JI) by 1.5% and 3.2%, respectively, and reduces (false positive ratio) FPR by 3.7% on image dataset B. The results of the ablation experiments show that each component of the JR matters, and contributes to the segmentation accuracy, particularly in the reduction of false positives.This study successfully combines traditional segmentation methods with deep learning models. The proposed method can segment small-scale breast ultrasound image datasets efficiently and effectively, with excellent generalization performance.

摘要

本文提出了一种用于二维(2D)超声图像的自动乳腺肿瘤分割方法,与常见的基于小数据集的深度学习模型相比,该方法具有更高的准确性、鲁棒性和适应性。建立了一种通用的联合训练和细化分割框架(JR),包括联合训练模块()和细化分割模块()。在中,两个分割网络在提出的分割 Jocor(JFS)算法的指导下同时进行训练。在中,通过提出的区域优先(AF)算法和标记分水岭(MW)算法对的输出进行细化。AF 主要根据候选轮廓的面积、距离、平均径向导数(ARD)和径向梯度指数(RGI)来减少由于乳腺超声图像固有特征而容易产生的假阳性。同时,MW 避免了过度分割,并细化了分割结果。为了验证其性能,JR 框架在三个乳腺超声图像数据集上进行了评估。数据集 A 包含来自当地医院的 1036 张图像。数据集 B 和 C 是两个公共数据集,分别包含 562 张和 163 张图像。评估后进行了相关的消融实验。JR 在三个图像数据集上的性能优于其他最先进的(SOTA)方法,特别是在数据集 B 上。与 SOTA 方法相比,JR 在数据集 B 上分别将真阳性率(TPR)和 Jaccard 指数(JI)提高了 1.5%和 3.2%,同时将(假阳性率)FPR 降低了 3.7%。消融实验的结果表明,JR 的每个组成部分都很重要,有助于提高分割精度,尤其是在减少假阳性方面。本研究成功地将传统分割方法与深度学习模型相结合。所提出的方法可以有效地分割小规模乳腺超声图像数据集,具有出色的泛化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验