Huang Zexi, Yang Xin, Huang Sijuan, Guo Lihua
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China.
Department of Radiation, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.
Bioengineering (Basel). 2023 Sep 24;10(10):1119. doi: 10.3390/bioengineering10101119.
Nasopharyngeal carcinoma (NPC) is a kind of malignant tumor. The accurate and automatic segmentation of computed tomography (CT) images of organs at risk (OAR) is clinically significant. In recent years, deep learning models represented by U-Net have been widely applied in medical image segmentation tasks, which can help to reduce doctors' workload. In the OAR segmentation of NPC, the sizes of the OAR are variable, and some of their volumes are small. Traditional deep neural networks underperform in segmentation due to the insufficient use of global and multi-size information. Therefore, a new SE-Connection Pyramid Network (SECP-Net) is proposed. For extracting global and multi-size information, the SECP-Net designs an SE-connection module and a pyramid structure for improving the segmentation performance, especially that of small organs. SECP-Net also uses an auto-context cascaded structure to further refine the segmentation results. Comparative experiments are conducted between SECP-Net and other recent methods on a private dataset with CT images of the head and neck and a public liver dataset. Five-fold cross-validation is used to evaluate the performance based on two metrics; i.e., Dice and Jaccard similarity. The experimental results show that SECP-Net can achieve SOTA performance in these two challenging tasks.
鼻咽癌(NPC)是一种恶性肿瘤。对头颈部危及器官(OAR)的计算机断层扫描(CT)图像进行准确、自动分割具有重要临床意义。近年来,以U-Net为代表的深度学习模型在医学图像分割任务中得到广泛应用,有助于减轻医生的工作量。在鼻咽癌的OAR分割中,OAR的大小各不相同,且其中一些体积较小。传统深度神经网络由于对全局和多尺度信息利用不足,在分割方面表现不佳。因此,提出了一种新的SE连接金字塔网络(SECP-Net)。为了提取全局和多尺度信息,SECP-Net设计了一个SE连接模块和一个金字塔结构来提高分割性能,尤其是对小器官的分割性能。SECP-Net还使用自动上下文级联结构进一步细化分割结果。在一个包含头颈部CT图像的私有数据集和一个公共肝脏数据集上,对SECP-Net与其他近期方法进行了对比实验。采用五折交叉验证,基于两个指标(即Dice和Jaccard相似性)评估性能。实验结果表明,SECP-Net在这两项具有挑战性的任务中能够实现最优性能。