Suppr超能文献

切应力和血管内压对血管动力学的影响:考虑到被动应力的弹性微血管中的两相血流。

Shear stress and intravascular pressure effects on vascular dynamics: two-phase blood flow in elastic microvessels accounting for the passive stresses.

机构信息

Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, Patras, Greece.

出版信息

Biomech Model Mechanobiol. 2022 Dec;21(6):1659-1684. doi: 10.1007/s10237-022-01612-2. Epub 2022 Aug 12.

Abstract

We study the steady hemodynamics in physiological elastic microvessels proposing an advanced fluid-structure interaction model. The arteriolar tissue is modeled as a two-layer fiber-reinforced hyperelastic material representing its Media and Adventitia layers. The constitutive model employed (Holzapfel et al. in J Elast 61:1-48, 2000) is parametrized via available data on stress-strain experiments for arterioles. The model is completed by simulating the blood/plasma flow in the lumen, using the thixotropic elasto-viscoplastic model in its core, and the linear Phan-Thien and Tanner viscoelastic model in its annular part. The Cell-Free Layer (CFL) and the Fåhraeus and Fåhraeus-Lindqvist effects are considered via analytical expressions based on experimental data (Giannokostas et al. in Materials (Basel) 14:367, 2021b). The coupling between tissue deformation and blood flow is achieved through the experimentally verified pressure-shear hypothesis (Pries et al. Circ Res 77:1017-1023, 1995). Our calculations confirm that the increase in the reference inner radius produces larger expansion. Also, by increasing the intraluminal pressure, the thinning of the walls is more pronounced and it may reach 40% of the initial thickness. Comparing our predictions with those in rigid-wall microtubes, we conclude that apart from the vital importance of vasodilation, there is an up to 25% reduction in wall shear stress. The passive vasodilation contributes to the decrease in the tissue stress fields and affects the hemodynamic features such as the CFL thickness, reducing the plasma layer when blood flows in vessels with elastic walls, in quantitative agreement with previous experiments. Our calculations verify the correctness of the pressure-shear hypothesis but not that of the Laplace law.

摘要

我们研究生理弹性微血管中的稳态血液动力学,提出了一种先进的流固耦合模型。小动脉组织被建模为两层纤维增强超弹性材料,代表其中膜和外膜层。所采用的本构模型(Holzapfel 等人,J Elast 61:1-48, 2000)通过可用的小动脉应力-应变实验数据进行参数化。通过使用核心的触变弹性粘塑性模型和环形部分的线性 Phan-Thien 和 Tanner 粘弹性模型来模拟管腔中的血液/血浆流动,来完成该模型。通过基于实验数据的分析表达式考虑无细胞层(CFL)和 Fåhraeus 和 Fåhraeus-Lindqvist 效应(Giannokostas 等人,Materials (Basel) 14:367, 2021b)。组织变形和血流之间的耦合通过经过实验验证的压力-剪切假说(Pries 等人,Circ Res 77:1017-1023, 1995)来实现。我们的计算结果证实,参考内半径的增加会导致更大的扩张。此外,通过增加管腔内压力,壁的变薄更加明显,可能达到初始厚度的 40%。将我们的预测与刚性壁微管的预测进行比较,我们得出结论,除了血管舒张至关重要之外,壁剪切应力降低了 25%。被动血管舒张有助于降低组织应力场,并影响血液动力学特征,例如 CFL 厚度,当血液在具有弹性壁的血管中流动时,会减少等离子体层,这与之前的实验结果定量一致。我们的计算结果验证了压力-剪切假说的正确性,但没有验证拉普拉斯定律的正确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验