Suppr超能文献

血液触变弹黏塑性行为的高级本构模型:微管中的稳态血流

Advanced Constitutive Modeling of the Thixotropic Elasto-Visco-Plastic Behavior of Blood: Steady-State Blood Flow in Microtubes.

作者信息

Giannokostas Konstantinos, Dimakopoulos Yannis, Anayiotos Andreas, Tsamopoulos John

机构信息

Laboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26504 Patras, Greece.

Department of Mechanical and Materials Engineering, Cyprus University of Technology, Limassol 3036, Cyprus.

出版信息

Materials (Basel). 2021 Jan 13;14(2):367. doi: 10.3390/ma14020367.

Abstract

The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.

摘要

目前的工作重点是对直管中稳态血流进行计算机模拟研究,其中纳入了针对人体血液和血浆的先进本构模型。血液本构模型通过一个标量变量来描述触变性与弹黏塑性之间的相互作用,该标量变量可描述任一时刻局部血液结构的水平。通过对具有体积黏弹性的血浆相进行非牛顿建模,对本构模型进行了改进。纳入诸如无细胞层(CFL)形成或法厄斯效应和法厄斯-林德奎斯特效应等微循环现象是血流研究中不可或缺的一部分。它们与动量平衡之间的耦合是通过基于实验观察的相关性来实现的。值得注意的是,我们针对表观黏度对血细胞比容的依赖性提出了一种新的简化形式,该形式能够正确预测CFL厚度。我们的研究重点是微管直径和压力梯度对速度分布、法向和剪切黏弹性应力以及触变特性的影响。我们展示了稳态条件下血液的微观结构构型,结果表明血液在细管中高度聚集,从而形成平坦的速度分布。此外,对CFL厚度的恰当考虑表明,对于细微管,排出的血细胞比容的降低幅度很大,在某些情况下高达70%。在高压梯度下,两个区域的血浆蛋白都沿流动方向伸展,产生较大的轴向法向应力,这在核心区域更为显著。我们还提供了血液/血浆界面(INS)和管壁(WNS)处的法向应力预测值,这些值在实验中很难测量。两者均随管半径减小;然而,它们在大小和变化类型上存在显著差异。INS从4.5 Pa线性变化到2 Pa,而WNS呈指数下降,取值从50 mPa到零。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e0/7828603/f22a56c6a9ca/materials-14-00367-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验