Suppr超能文献

双稳态神经传导。

Bistable nerve conduction.

机构信息

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.

出版信息

Biophys J. 2022 Sep 20;121(18):3499-3507. doi: 10.1016/j.bpj.2022.08.006. Epub 2022 Aug 12.

Abstract

It has been demonstrated experimentally that slow and fast conduction waves with distinct conduction velocities can occur in the same nerve system depending on the strength or the form of the stimulus, which give rise to two modes of nerve functions. However, the mechanisms remain to be elucidated. In this study, we use computer simulations of the cable equation with modified Hodgkin-Huxley kinetics and analytical solutions of a simplified model to show that stimulus-dependent slow and fast waves recapitulating the experimental observations can occur in the cable, which are the two stable conduction states of a bistable conduction behavior. The bistable conduction is caused by a positive feedback loop of the wavefront upstroke speed, mediated by the sodium channel inactivation properties. Although the occurrence of bistable conduction only requires the presence of the sodium current, adding a calcium current to the model further promotes bistable conduction by potentiating the slow wave. We also show that the bistable conduction is robust, occurring for sodium and calcium activation thresholds well within the experimentally determined ones of the known sodium and calcium channel families. Since bistable conduction can occur in the cable equation of Hodgkin-Huxley kinetics with a single inward current, i.e., the sodium current, it can be a generic mechanism applicable to stimulus-dependent fast and slow conduction not only in the nerve systems but also in other electrically excitable systems, such as cardiac muscles.

摘要

实验已经证明,根据刺激的强度或形式,同一神经系统中可能会出现具有不同传导速度的慢波和快波,从而产生两种神经功能模式。然而,其机制仍有待阐明。在本研究中,我们使用改良 Hodgkin-Huxley 动力学的电缆方程的计算机模拟和简化模型的解析解来表明,依赖于刺激的慢波和快波可以在电缆中重现实验观察到的情况,这是双稳态传导行为的两种稳定传导状态。双稳态传导是由波前上升速度的正反馈环引起的,这是由钠通道失活特性介导的。尽管双稳态传导的发生仅需要存在钠电流,但向模型中添加钙电流可以通过增强慢波来进一步促进双稳态传导。我们还表明,双稳态传导是稳健的,发生在钠和钙激活阈值内,这些阈值远低于已知的钠和钙通道家族的实验确定的阈值。由于双稳态传导可以发生在具有单一内向电流(即钠电流)的 Hodgkin-Huxley 动力学的电缆方程中,因此它可以是一种通用机制,适用于不仅在神经系统中,而且在其他可兴奋的电系统中,如心肌中的依赖于刺激的快波和慢波。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f376/9515125/11c111423f34/gr1.jpg

相似文献

1
Bistable nerve conduction.
Biophys J. 2022 Sep 20;121(18):3499-3507. doi: 10.1016/j.bpj.2022.08.006. Epub 2022 Aug 12.
4
Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents.
J Neurophysiol. 1998 Aug;80(2):583-93. doi: 10.1152/jn.1998.80.2.583.
5
Bistable spiral wave dynamics in electrically excitable media.
Phys Rev E. 2023 Dec;108(6-1):064405. doi: 10.1103/PhysRevE.108.064405.
6
Slow [Na]i Changes and Positive Feedback Between Membrane Potential and [Ca]i Underlie Intermittent Early Afterdepolarizations and Arrhythmias.
Circ Arrhythm Electrophysiol. 2015 Dec;8(6):1472-80. doi: 10.1161/CIRCEP.115.003085. Epub 2015 Sep 25.
8
Molecular mechanisms of nerve block by local anesthetics.
Anesthesiology. 1976 Oct;45(4):421-41. doi: 10.1097/00000542-197610000-00012.
9
The effects of static magnetic field on action potential propagation and excitation recovery in nerve.
Prog Biophys Mol Biol. 2005 Feb-Apr;87(2-3):321-8. doi: 10.1016/j.pbiomolbio.2004.08.013.

引用本文的文献

1
Bistable spiral wave dynamics in electrically excitable media.
Phys Rev E. 2023 Dec;108(6-1):064405. doi: 10.1103/PhysRevE.108.064405.

本文引用的文献

1
Measuring conduction velocity distributions in peripheral nerves using neurophysiological techniques.
Clin Neurophysiol. 2020 Jul;131(7):1581-1588. doi: 10.1016/j.clinph.2020.04.008. Epub 2020 Apr 29.
2
A-Type K Channels in Dorsal Root Ganglion Neurons: Diversity, Function, and Dysfunction.
Front Mol Neurosci. 2018 Aug 6;11:253. doi: 10.3389/fnmol.2018.00253. eCollection 2018.
3
Ionic mechanisms underlying tonic and burst firing behavior in subfornical organ neurons: a combined experimental and modeling study.
J Neurophysiol. 2018 Nov 1;120(5):2269-2281. doi: 10.1152/jn.00340.2018. Epub 2018 Aug 8.
4
Evolution of rapid nerve conduction.
Brain Res. 2016 Jun 15;1641(Pt A):11-33. doi: 10.1016/j.brainres.2016.02.015. Epub 2016 Feb 12.
5
Nonlinear and Stochastic Dynamics in the Heart.
Phys Rep. 2014 Oct 10;543(2):61-162. doi: 10.1016/j.physrep.2014.05.002.
6
The "Lillie transition": models of the onset of saltatory conduction in myelinating axons.
J Comput Neurosci. 2013 Jun;34(3):533-46. doi: 10.1007/s10827-012-0435-3. Epub 2013 Jan 11.
7
Reverberation of recent visual experience in spontaneous cortical waves.
Neuron. 2008 Oct 23;60(2):321-7. doi: 10.1016/j.neuron.2008.08.026.
8
Compression and reflection of visually evoked cortical waves.
Neuron. 2007 Jul 5;55(1):119-29. doi: 10.1016/j.neuron.2007.06.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验