Suppr超能文献

基于键贡献排序的构象生成优化算法。

An optimization algorithm for conformer generation based on the bond contribution ranking.

机构信息

School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.

Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China.

出版信息

Comput Biol Chem. 2022 Oct;100:107751. doi: 10.1016/j.compbiolchem.2022.107751. Epub 2022 Aug 7.

Abstract

Many works in computational drug discovery require the conformer generation of small molecules. Most existing tools aim to generate diverse conformers and deal with all of the rotatable bonds without distinction. There are some problems in existing approaches, such as the combinatorial explosion of conformers along with the number of rotatable bonds increasing and the incomplete sampling of the conformational space. Here, we present an optimized conformer generation algorithm based on the bond contribution ranking (ABCR) to find the optimal conformer under any specified scoring function. Compared with existing methods, our method can improve molecular conformational searching and protein-ligand docking performance. Meanwhile, our method has the same or broader coverage of conformational space in the global conformer sampling. Our research shows it can achieve the optima with small numbers of generated conformers and small numbers of iterations.

摘要

许多计算药物发现的工作都需要小分子构象生成。大多数现有的工具旨在生成多样化的构象,并不加区分地处理所有可旋转键。现有方法存在一些问题,例如构象随着可旋转键数量的增加而呈组合爆炸式增长,构象空间的采样不完整。在这里,我们提出了一种基于键贡献排序(ABCR)的优化构象生成算法,以在任何指定的评分函数下找到最优构象。与现有方法相比,我们的方法可以提高分子构象搜索和蛋白-配体对接的性能。同时,我们的方法在全局构象采样中具有相同或更广泛的构象空间覆盖范围。我们的研究表明,它可以用较少的构象生成和较少的迭代次数达到最优。

相似文献

1
An optimization algorithm for conformer generation based on the bond contribution ranking.
Comput Biol Chem. 2022 Oct;100:107751. doi: 10.1016/j.compbiolchem.2022.107751. Epub 2022 Aug 7.
2
First-Principles Molecular Structure Search with a Genetic Algorithm.
J Chem Inf Model. 2015 Nov 23;55(11):2338-48. doi: 10.1021/acs.jcim.5b00243. Epub 2015 Nov 2.
3
Bayesian optimization for conformer generation.
J Cheminform. 2019 May 21;11(1):32. doi: 10.1186/s13321-019-0354-7.
4
Conformation Generation: The State of the Art.
J Chem Inf Model. 2017 Aug 28;57(8):1747-1756. doi: 10.1021/acs.jcim.7b00221. Epub 2017 Jul 31.
5
Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery.
Bioorg Med Chem. 2013 Dec 15;21(24):7898-920. doi: 10.1016/j.bmc.2013.10.003. Epub 2013 Oct 16.
6
Accurate and Efficient Conformer Sampling of Cyclic Drug-Like Molecules with Inverse Kinematics.
J Chem Inf Model. 2024 Jun 10;64(11):4542-4552. doi: 10.1021/acs.jcim.3c02040. Epub 2024 May 22.
8
Conformator: A Novel Method for the Generation of Conformer Ensembles.
J Chem Inf Model. 2019 Feb 25;59(2):731-742. doi: 10.1021/acs.jcim.8b00704. Epub 2019 Feb 12.
9
Freely available conformer generation methods: how good are they?
J Chem Inf Model. 2012 May 25;52(5):1146-58. doi: 10.1021/ci2004658. Epub 2012 Apr 19.
10
Dynamic clustering threshold reduces conformer ensemble size while maintaining a biologically relevant ensemble.
J Comput Aided Mol Des. 2010 Aug;24(8):675-86. doi: 10.1007/s10822-010-9365-1. Epub 2010 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验