N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation.
J Chem Inf Model. 2024 Jun 10;64(11):4542-4552. doi: 10.1021/acs.jcim.3c02040. Epub 2024 May 22.
Identification of all of the influential conformers of biomolecules is a crucial step in many tasks of computational biochemistry. Specifically, molecular docking, a key component of drug development, requires a comprehensive set of conformations for potential candidates in order to generate the optimal ligand-receptor poses and, ultimately, find the best drug candidates. However, the presence of flexible cycles in a molecule complicates the initial search for conformers since exhaustive sampling algorithms torsional random and systematic searches become very inefficient. The devised inverse-kinematics-based Monte Carlo with refinement (MCR) algorithm identifies independently rotatable dihedral angles in (poly)cyclic molecules and uses them to perform global conformational sampling, outperforming popular alternatives (MacroModel, CREST, and RDKit) in terms of speed and diversity of the resulting conformer ensembles. Moreover, MCR quickly and accurately recovers naturally occurring macrocycle conformations for most of the considered molecules.
鉴定生物分子的所有有影响的构象是许多计算生物化学任务的关键步骤。具体来说,分子对接是药物开发的关键组成部分,需要为潜在候选物提供一套全面的构象,以生成最佳的配体-受体构象,最终找到最佳的药物候选物。然而,分子中存在柔性环会使最初的构象搜索变得复杂,因为详尽的采样算法——扭转随机搜索和系统搜索变得非常低效。所设计的基于逆运动学的蒙特卡罗与精修(MCR)算法可识别(多)环分子中的独立可旋转二面角,并使用这些二面角进行全局构象采样,在速度和构象集合的多样性方面优于流行的替代方法(MacroModel、CREST 和 RDKit)。此外,MCR 可以快速准确地恢复大多数考虑的分子中自然存在的大环构象。