Earth Observatory of Singapore, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
Center for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.
Acta Biomater. 2022 Oct 1;151:446-456. doi: 10.1016/j.actbio.2022.08.012. Epub 2022 Aug 11.
Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young's modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young's modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young's modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young's modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales. STATEMENT OF SIGNIFICANCE: Coral biomineralization and the ability of corals' skeletal structure to withstand biotic and abiotic forces underpins the success of reef ecosystems. At the microscale, we show increased skeletal stiffness and hardness perpendicular to the coral growth direction. By comparing nano- and micro-scale indentation results, we also reveal an effect of hierarchical architecture on the mechanical properties of coral skeletons and hypothesize that crystal packing and orientation result in microscale anisotropy. In contrast to previous findings, we demonstrate that mechanical and crystallographic properties of coral skeletons can vary between surface planes, within surface planes, and at different analytical scales. These results improve our understanding of biomineralization and the effects of scale and direction on how biomineral structures respond to environmental stimuli.
造礁石珊瑚形成的结构支撑着多样的海洋生态系统。尽管珊瑚骨骼十分重要,而且预计它们会很容易受到气候变化的影响,但很少有研究从微观和纳米尺度来检测珊瑚骨骼的力学和结晶特性。在这里,我们通过测量沿与主珊瑚生长方向横向和纵向的表面的杨氏模量和硬度,研究了多孔鹿角珊瑚骨骼中结晶和微观结构组织与机械各向异性之间的相互作用。我们观察到了微尺度各向异性,其中横向表面的杨氏模量和硬度分别增加了约 6GPa 和 0.2GPa。电子背散射衍射(EBSD)显示,与纵向表面相比,这个表面的晶体也有更高比例的 a 轴在 ±30-60 之间取向,并且晶粒尺寸分布更宽。在杨氏模量急剧变化的微观区域内,进行了纳米压痕测绘、能量色散光谱(EDS)、EBSD 和拉曼结晶学分析。在具有相关性的趋势中,杨氏模量较高的区域是单个晶体基底(c 轴)向上的区域,而在晶体纤维中相对较高的区域是在钙化中心。这些关系突出了不同尺度(即晶体、晶体束、晶粒)之间力学性能的差异。晶体取向和力学性能的观察表明,各向异性是由微尺度组织和晶体堆积驱动的,而不是由晶体内在各向异性驱动的。与珊瑚中纳米尺度各向同性的先前观察结果相比,我们的结果说明了分层结构在珊瑚骨骼中的作用以及生物和非生物因素对不同尺度力学性能的影响。意义声明:珊瑚生物矿化作用以及珊瑚骨骼承受生物和非生物力量的能力是珊瑚礁生态系统成功的基础。在微观尺度上,我们发现与珊瑚生长方向垂直的骨骼硬度和刚度增加。通过比较纳米和微观尺度压痕结果,我们还揭示了分层结构对珊瑚骨骼力学性能的影响,并假设晶体堆积和取向导致了微尺度各向异性。与以前的发现不同,我们证明了珊瑚骨骼的力学和结晶特性可以在表面平面之间、表面平面内以及不同的分析尺度上变化。这些结果提高了我们对生物矿化作用以及尺度和方向对生物矿化结构如何响应环境刺激的影响的理解。