Department of Physics, University of Wisconsin, Madison, WI 53706, USA; Materials Science Program, University of Wisconsin, Madison, WI 53706, USA.
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, 1525 Budapest, Hungary.
Acta Biomater. 2021 Jan 15;120:277-292. doi: 10.1016/j.actbio.2020.06.027. Epub 2020 Jun 23.
Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed "sprinkles". In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed "non-crystallographic branching". Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. STATEMENT OF SIGNIFICANCE: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, polymers, food science, and pharmaceutical production. Using the skeletons of reef-building corals as a model system for investigating these processes, we propose a new spherulite growth mechanism that can not only explain the micro-structural diversity observed in distantly related coral species, but may point to a universal growth mechanism in a wide range of biologically and technologically relevant spherulitic materials systems.
球晶是针状晶体的放射状分布,常见于生物、地质和合成系统中,但球晶的成核和生长的确切机制仍知之甚少。为了更详细地研究这些过程,我们选择珊瑚作为模型系统,因为众所周知,它们的骨骼是由霰石(CaCO3)球晶形成的,而且之前没有对不同珊瑚物种的晶体结构进行过比较研究。我们观察到,这里分析的 12 种不同的珊瑚物种的骨骼中都有羽状球晶,具有明确的钙化中心(CoC),以及从它们辐射出的结晶纤维。在这 12 个物种中的 7 个中,我们观察到了以前没有观察到的骨骼结构模式:随机取向的等轴晶体,我们称之为“洒晶”。在 Acropora pharaonis 中,这些洒晶定位于 CoC 处,而在其他 6 个物种中,洒晶要么分层在球晶的生长前沿(GF)处,要么随机分布。在纳米和微米尺度上,珊瑚骨骼填充空间的方式与霰石单晶相同。基于这些观察结果,我们初步提出了一种球晶形成机制,其中随机取向洒晶的生长前沿成核(GFN)、空间竞争和粗化产生球晶,而不是以前假设的稍微错位成核,称为“非晶分支”。相场模拟支持这种机制,并且仅使用一组最小的热力学参数,就能够再现所有实验观察到的在所研究的所有珊瑚骨骼中的微观结构变化。除了珊瑚骨骼之外,其他球晶系统,从阿司匹林到半结晶聚合物和巧克力,也可能根据这里提出的球晶形成机制形成。研究意义:了解球晶成核和生长的基本机制在冶金学、聚合物、食品科学和制药生产等领域具有广泛的应用。我们使用造礁珊瑚的骨骼作为研究这些过程的模型系统,提出了一种新的球晶生长机制,不仅可以解释在远缘珊瑚物种中观察到的微观结构多样性,而且可能指向在广泛的生物和技术相关的球晶材料系统中的通用生长机制。