Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany.
BMC Bioinformatics. 2022 Aug 13;23(1):335. doi: 10.1186/s12859-022-04866-w.
We study in this work the inverse folding problem for RNA, which is the discovery of sequences that fold into given target secondary structures.
We implement a Lévy mutation scheme in an updated version of aRNAque an evolutionary inverse folding algorithm and apply it to the design of RNAs with and without pseudoknots. We find that the Lévy mutation scheme increases the diversity of designed RNA sequences and reduces the average number of evaluations of the evolutionary algorithm. Compared to antaRNA, aRNAque CPU time is higher but more successful in finding designed sequences that fold correctly into the target structures.
We propose that a Lévy flight offers a better standard mutation scheme for optimizing RNA design. Our new version of aRNAque is available on GitHub as a python script and the benchmark results show improved performance on both Pseudobase++ and the Eterna100 datasets, compared to existing inverse folding tools.
我们在这项工作中研究了 RNA 的逆折叠问题,即发现能够折叠成给定目标二级结构的序列。
我们在 RNAque 的一个更新版本中实现了莱维突变方案,这是一种进化逆折叠算法,并将其应用于具有和不具有假结的 RNA 的设计。我们发现莱维突变方案增加了设计 RNA 序列的多样性,并减少了进化算法的平均评估次数。与 antaRNA 相比,aRNAque 的 CPU 时间较高,但在找到正确折叠成目标结构的设计序列方面更成功。
我们提出莱维飞行提供了一种更好的标准突变方案来优化 RNA 设计。我们的 aRNAque 新版本可作为 Python 脚本在 GitHub 上获得,基准测试结果表明,与现有逆折叠工具相比,它在 Pseudobase++和 Eterna100 数据集上的性能得到了提高。