Suppr超能文献

线性相关不足以作为关联的唯一衡量标准:以技术使用和心理健康为例。

Linear correlation is insufficient as the sole measure of associations: The case of technology use and mental health.

机构信息

Department of Psychology, San Diego State University, United States of America.

Department of Psychology, Rutgers University, United States of America.

出版信息

Acta Psychol (Amst). 2022 Sep;229:103696. doi: 10.1016/j.actpsy.2022.103696. Epub 2022 Aug 11.

Abstract

It is common for psychology studies to rely solely on linear correlation (r) or similar statistics and not include other measures of association (such as relative risk, which examines differences in the number of people affected). For example, the association between smoking and lung cancer (r = 0.06) could be dismissed as "small" if only linear r is examined, even though 30 times more smokers than non-smokers get lung cancer. Many studies concluding that associations between technology use and well-being as too small to be of practical importance relied solely on linear r. We show that, across five datasets, "small" correlations between technology use and mental health exist alongside practically important risk associations. As there are several valid types of association, and characterizing an association based on a single type of a measure - such as linear r or r - can be misleading.

摘要

心理学研究通常仅依赖线性相关(r)或类似的统计数据,而不包括其他关联度量(例如相对风险,它检查受影响人数的差异)。例如,如果仅检查线性 r,吸烟与肺癌之间的关联(r=0.06)可能被视为“较小”,尽管吸烟者患肺癌的人数比不吸烟者多 30 倍。许多研究得出的结论是,技术使用与幸福感之间的关联太小,没有实际意义,这些研究仅依赖于线性 r。我们表明,在五个数据集上,技术使用与心理健康之间存在“较小”的相关性,同时也存在实际重要的风险关联。由于存在几种有效的关联类型,并且仅基于一种度量类型(例如线性 r 或 r)来描述关联可能会产生误导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验