Suppr超能文献

基于 GIS 和遥感数据的交通网络专用洪灾风险评估

Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data.

机构信息

University of Surrey, Department of Civil and Environmental Engineering, Guildford, UK.

International Hellenic University, Dept. of Forest and Natural Environment, Thessaloniki, Greece.

出版信息

Sci Total Environ. 2022 Dec 1;850:157976. doi: 10.1016/j.scitotenv.2022.157976. Epub 2022 Aug 11.

Abstract

A novel framework for the expedient assessment of flood risk to transportation networks focused on the response of the most critical and vulnerable infrastructure assets, the bridges, is developed, validated and applied. Building upon the recent French guidelines on scour risk (CEREMA, 2019), this paper delivers a thorough methodology, that incorporates three key, risk parameters: (i) the hydrodynamic loading, a hazard component of equal significance to scour, for the assessment of hazard; (ii) the correlation of select scour indicators with a new index relating to flow velocity, a primary measure of the adverse impacts of flow-structure interaction, enabling a more accurate and automated, assessment of bridge susceptibility to scour; (iii) the use of a new, comprehensive indicator, namely the Indicator of Flood Hazard Intensity (IFHI) which incorporates, in a simple yet efficient way, the key parameters controlling the severity of flood impact on bridges, namely flow velocity, floodwater height, flow obstruction, and sediment type. The framework is implemented for the analysis of flood risk in a case study area, considering an inventory of 117 bridges of diverse construction characteristics, which were affected by a major flood that impacted Greece in September 2020. The reliability of the method is validated against an extensive record of inspected and documented bridge damages. Regional scale analysis is facilitated by the adoption of the Multi-Criteria Decision-Making method for flood hazard indexing, considering geomorphological, meteorological, hydrological, and land use/cover data, based on the processing of remotely sensed imagery and openly available geospatial datasets in GIS.

摘要

开发、验证和应用了一种新的框架,用于快速评估交通网络的洪水风险,重点关注最关键和最脆弱的基础设施资产,即桥梁的响应。该框架建立在最近的法国冲刷风险指南(CEREMA,2019 年)的基础上,提供了一种全面的方法,其中包含三个关键的风险参数:(i)水动力荷载,这是冲刷危害同等重要的一个危害组成部分,用于评估危害;(ii)选择的冲刷指标与新的与流速相关的指数之间的相关性,这是评估水流与结构相互作用的不利影响的主要手段,能够更准确和自动地评估桥梁受冲刷的敏感性;(iii)使用新的综合指标,即洪水危害强度指标(IFHI),它以简单而有效的方式综合了控制洪水对桥梁影响严重程度的关键参数,即流速、洪水水位、水流阻塞和泥沙类型。该框架在一个案例研究区域中用于分析洪水风险,考虑了 117 座具有不同建筑特征的桥梁的库存,这些桥梁受到了 2020 年 9 月影响希腊的一次重大洪水的影响。该方法的可靠性通过与广泛记录的检查和记录的桥梁损坏进行对比验证。通过采用多标准决策方法进行洪水危害指数编制,考虑了地貌、气象、水文和土地利用/覆盖数据,该方法基于处理遥感图像和 GIS 中公开的地理空间数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验