Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, 416 004, Maharashtra, India.
Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra, India.
Cell Biochem Biophys. 2022 Dec;80(4):665-680. doi: 10.1007/s12013-022-01086-0. Epub 2022 Aug 15.
Structural significance of conformational preferences and ribose ring puckering of newly discovered hyper modified nucleotide, 5'-monophosphate 2-methylthio cyclic N-threonylcarbamoyladenosine (p-msctA) have been investigated using quantum chemical semi-empirical RM1 and molecular dynamics simulation techniques. Automated geometry optimization of most stable structure of p-msctA has also been carried out with the help of abinitio (HF SCF, DFT) as well as semi empirical quantum chemical (RM1, AM1, PM3, and PM6) methods. Most stable structure of p-msctA is stabilized by intramolecular interactions between N(3)…HC(2'), N(1)…HC(16), O(13)…HC(15), and O(13)…HO(14). The torsion angles alpha (α) and beta (β) show the significant characteristic patterns with the involvement of intramolecular hydrogen bonding to provide stability to the p-msctA. Further, molecular dynamics simulations of p-msctA revealed the role of ribose sugar ring puckering i.e. C2'-endo and C3'-endo on the structural dynamics of msctA side chain. The modified nucleotide p-msctA periodically prefers both the C2'-endo and C3'-endo sugar with 'anti' and 'syn' conformations. This property of p-msctA could be useful to recognize the starting ANN codons. All atom explicit MD simulation of anticodon loop (ACL) of tRNA of Bacillus subtilis containing msctA at 37th position showed the U-turn feature, base stacking ability with other adjacent bases and hydrogen bonding interactions similar to the isolated base p-msctA. The ribose sugar puckering contributes to the orientation of the side chain conformation of p-msctA. Thus, the present study could be helpful to understand the structure-function relationship of the hypermodified nucleoside, msctA in recognition of the proper codons AAA/AAG during protein biosynthesis.
已使用量子化学半经验 RM1 和分子动力学模拟技术研究了新发现的超修饰核苷酸 5'-单磷酸 2-甲基巯基环 N-硫代氨甲酰基胸苷酸(p-msctA)的构象偏好和核糖环扭曲的结构意义。还借助从头算(HF SCF、DFT)以及半经验量子化学(RM1、AM1、PM3 和 PM6)方法对 p-msctA 最稳定结构进行了自动几何优化。p-msctA 的最稳定结构通过 N(3)…HC(2')、N(1)…HC(16)、O(13)…HC(15)和 O(13)…HO(14)之间的分子内相互作用稳定。α(α)和β(β)扭转角表现出明显的特征模式,涉及分子内氢键以提供 p-msctA 的稳定性。此外,p-msctA 的分子动力学模拟揭示了核糖糖环扭曲即 C2'-endo 和 C3'-endo 对 msctA 侧链结构动力学的作用。修饰核苷酸 p-msctA 周期性地偏爱 C2'-endo 和 C3'-endo 糖,并具有 '反式' 和 '顺式' 构象。p-msctA 的这种特性可能有助于识别起始 ANN 密码子。在 37 位含有 msctA 的枯草芽孢杆菌 tRNA 反密码子环(ACL)的全原子显式 MD 模拟中,显示出 U 型转弯特征、与其他相邻碱基的碱基堆积能力以及与分离碱基 p-msctA 相似的氢键相互作用。核糖糖的扭曲有助于 p-msctA 侧链构象的定向。因此,本研究有助于理解超修饰核苷 msctA 在蛋白质生物合成过程中识别适当密码子 AAA/AAG 的结构-功能关系。