Suppr超能文献

中性粒细胞 CD64 指数作为一种新型炎症标志物,用于预测感染性和非感染性炎症性疾病的预后:一项发热患者的观察性研究。

nCD64 index as a novel inflammatory indicator for the early prediction of prognosis in infectious and non-infectious inflammatory diseases: An observational study of febrile patients.

机构信息

Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

Emergency Department, Huashan Hospital, Fudan University, Shanghai, China.

出版信息

Front Immunol. 2022 Jul 28;13:905060. doi: 10.3389/fimmu.2022.905060. eCollection 2022.

Abstract

BACKGROUND

Generally, febrile patients admitted to the Department of Infectious Diseases, Fudan University Affiliated Huashan Hospital, China may eventually be diagnosed as infectious (ID) or non-infectious inflammatory diseases (NIID). Furthermore, mortality from sepsis remains incredibly high. Thus, early diagnosis and prognosis evaluation of sepsis is necessary. Here, we investigated neutrophil (n)CD64 index profile in a cohort of febrile patients and explored its diagnostic and prognostic value in ID and NIID.

METHODS

This observational cohort study enrolled 348 febrile patients from the Emergency Department and Department of Infectious Diseases. nCD64 index were detected using flow cytometry, and dynamically measured at different timepoints during follow-up. Procalcitonin (PCT), C-reactive protein (CRP), and ferritin levels were measured routinely. Finally, the diagnostic and prognostic value of nCD64 index were evaluated by receiver operating characteristic (ROC) analysis and Kaplan-Meier curve analysis.

RESULTS

Of included 348 febrile patients, 238, 81, and 29 were categorized into ID, NIID, and lymphoma groups, respectively. In ID patients, both SOFA score and infection site had impact on nCD64 index expression. In NIID patients, adult-onset Still's disease patients had the highest nCD64 index value, however, nCD64 index couldn't distinguish between ID and NIID. Regardless of the site of infection, nCD64 index was significantly higher in bacterial and viral infections than in fungal infections, but it could not discriminate between bacterial and viral infections. In bloodstream infections, gram-negative (G-) bacterial infections showed an obvious increase in nCD64 index compared to that of gram-positive (G+) bacterial infections. nCD64 index has the potential to be a biomarker for distinguishing between DNA and RNA virus infections. The routine measurement of nCD64 index can facilitate septic shock diagnosis and predict 28-day hospital mortality in patients with sepsis. Serial monitoring of nCD64 index in patients with sepsis is helpful for evaluating prognosis and treatment efficacy. Notably, nCD64 index is more sensitive to predict disease progression and monitor glucocorticoid treatment in patients with NIID.

CONCLUSIONS

nCD64 index can be used to predict 28-day hospital mortality in patients with sepsis and to evaluate the prognosis. Serial determinations of nCD64 index can be used to predict and monitor disease progression in patients with NIID.

摘要

背景

在中国,复旦大学附属华山医院感染科收治的发热患者最终可能被诊断为感染性(ID)或非感染性炎症性疾病(NIID)。此外,脓毒症的死亡率仍然非常高。因此,早期诊断和预后评估脓毒症是必要的。在这里,我们研究了发热患者队列中的中性粒细胞(n)CD64 指数谱,并探讨了其在 ID 和 NIID 中的诊断和预后价值。

方法

本观察性队列研究纳入了来自急诊科和感染科的 348 例发热患者。使用流式细胞术检测 nCD64 指数,并在随访过程中的不同时间点进行动态测量。常规检测降钙素原(PCT)、C 反应蛋白(CRP)和铁蛋白水平。最后,通过受试者工作特征(ROC)分析和 Kaplan-Meier 曲线分析评估 nCD64 指数的诊断和预后价值。

结果

纳入的 348 例发热患者中,238 例、81 例和 29 例分别归入 ID、NIID 和淋巴瘤组。在 ID 患者中,SOFA 评分和感染部位均对 nCD64 指数表达有影响。在 NIID 患者中,成人Still 病患者的 nCD64 指数值最高,但 nCD64 指数不能区分 ID 和 NIID。无论感染部位如何,细菌和病毒感染的 nCD64 指数均明显高于真菌感染,但不能区分细菌和病毒感染。血流感染中,革兰氏阴性(G-)细菌感染的 nCD64 指数明显高于革兰氏阳性(G+)细菌感染。nCD64 指数有可能成为区分 DNA 和 RNA 病毒感染的生物标志物。常规测量 nCD64 指数有助于诊断脓毒性休克,并预测脓毒症患者 28 天住院死亡率。对脓毒症患者进行 nCD64 指数的连续监测有助于评估预后和治疗效果。值得注意的是,nCD64 指数在 NIID 患者中对预测疾病进展和监测糖皮质激素治疗更为敏感。

结论

nCD64 指数可用于预测脓毒症患者 28 天住院死亡率,并评估预后。连续测定 nCD64 指数可用于预测和监测 NIID 患者的疾病进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5877/9367970/bbc4a819b6fa/fimmu-13-905060-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验