Suppr超能文献

用于高效基于文本的信息检索的混合优化与基于本体的语义模型。

Hybrid optimization and ontology-based semantic model for efficient text-based information retrieval.

作者信息

Kumar Ram, Sharma S C

机构信息

Electronics and Computer Discipline, DPT, Indian Institute of Technology, Roorkee, India.

出版信息

J Supercomput. 2023;79(2):2251-2280. doi: 10.1007/s11227-022-04708-9. Epub 2022 Aug 10.

Abstract

Query expansion is an important approach utilized to improve the efficiency of data retrieval tasks. Numerous works are carried out by the researchers to generate fair constructive results; however, they do not provide acceptable results for all kinds of queries particularly phrase and individual queries. The utilization of identical data sources and weighting strategies for expanding such terms are the major cause of this issue which leads the model unable to capture the comprehensive relationship between the query terms. In order to tackle this issue, we developed a novel approach for query expansion technique to analyze the different data sources namely WordNet, Wikipedia, and Text REtrieval Conference. This paper presents an Improved Aquila Optimization-based COOT(IAOCOOT) algorithm for query expansion which retrieves the semantic aspects that match the query term. The semantic heterogeneity associated with document retrieval mainly impacts the relevance matching between the query and the document. The main cause of this issue is that the similarity among the words is not evaluated correctly. To overcome this problem, we are using a Modified Needleman Wunsch algorithm algorithm to deal with the problems of uncertainty, imprecision in the information retrieval process, and semantic ambiguity of indexed terms in both the local and global perspectives. The k most similar word is determined and returned from a candidate set through the top-k words selection technique and it is widely utilized in different tasks. The proposed IAOCOOT model is evaluated using different standard Information Retrieval performance metrics to compute the validity of the proposed work by comparing it with other state-of-art techniques.

摘要

查询扩展是一种用于提高数据检索任务效率的重要方法。研究人员开展了大量工作以产生合理的建设性成果;然而,它们并不能为所有类型的查询(特别是短语查询和单个查询)提供可接受的结果。使用相同的数据源和加权策略来扩展此类术语是导致该问题的主要原因,这使得模型无法捕捉查询词之间的全面关系。为了解决这个问题,我们开发了一种新颖的查询扩展技术方法,以分析不同的数据源,即WordNet、维基百科和文本检索会议。本文提出了一种基于改进的天鹰座优化算法的查询扩展COOT(IAOCOOT)算法,该算法检索与查询词匹配的语义方面。与文档检索相关的语义异质性主要影响查询与文档之间的相关性匹配。这个问题的主要原因是单词之间的相似度没有得到正确评估。为了克服这个问题,我们使用一种改进的Needleman Wunsch算法来处理信息检索过程中的不确定性、不精确性以及索引词在局部和全局视角下的语义模糊性问题。通过top-k词选择技术从候选集中确定并返回k个最相似的词,它在不同任务中得到了广泛应用。使用不同的标准信息检索性能指标对所提出的IAOCOOT模型进行评估,通过与其他现有技术进行比较来计算所提出工作的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c0/9364863/d519b7a4a366/11227_2022_4708_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验