Suppr超能文献

基于无人机多光谱影像的马铃薯地上生物量估计的多维变量与特征参数选择

Multi-dimensional variables and feature parameter selection for aboveground biomass estimation of potato based on UAV multispectral imagery.

作者信息

Luo Shanjun, Jiang Xueqin, He Yingbin, Li Jianping, Jiao Weihua, Zhang Shengli, Xu Fei, Han Zhongcai, Sun Jing, Yang Jinpeng, Wang Xiangyi, Ma Xintian, Lin Zeru

机构信息

Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China.

出版信息

Front Plant Sci. 2022 Jul 29;13:948249. doi: 10.3389/fpls.2022.948249. eCollection 2022.

Abstract

Aboveground biomass (AGB) is an essential assessment of plant development and guiding agricultural production management in the field. Therefore, efficient and accurate access to crop AGB information can provide a timely and precise yield estimation, which is strong evidence for securing food supply and trade. In this study, the spectral, texture, geometric, and frequency-domain variables were extracted through multispectral imagery of drones, and each variable importance for different dimensional parameter combinations was computed by three feature parameter selection methods. The selected variables from the different combinations were used to perform potato AGB estimation. The results showed that compared with no feature parameter selection, the accuracy and robustness of the AGB prediction models were significantly improved after parameter selection. The random forest based on out-of-bag (RF-OOB) method was proved to be the most effective feature selection method, and in combination with RF regression, the coefficient of determination (R) of the AGB validation model could reach 0.90, with root mean square error (RMSE), mean absolute error (MAE), and normalized RMSE (nRMSE) of 71.68 g/m, 51.27 g/m, and 11.56%, respectively. Meanwhile, the regression models of the RF-OOB method provided a good solution to the problem that high AGB values were underestimated with the variables of four dimensions. Moreover, the precision of AGB estimates was improved as the dimensionality of parameters increased. This present work can contribute to a rapid, efficient, and non-destructive means of obtaining AGB information for crops as well as provide technical support for high-throughput plant phenotypes screening.

摘要

地上生物量(AGB)是评估作物生长发育以及指导田间农业生产管理的重要指标。因此,高效准确地获取作物AGB信息能够及时精确地估算产量,这对于保障粮食供应和贸易具有重要意义。本研究通过无人机多光谱影像提取光谱、纹理、几何和频域变量,并采用三种特征参数选择方法计算不同维度参数组合下各变量的重要性。从不同组合中选取的变量用于进行马铃薯AGB估算。结果表明,与未进行特征参数选择相比,参数选择后AGB预测模型的准确性和稳健性显著提高。基于袋外数据(RF - OOB)的随机森林方法被证明是最有效的特征选择方法,结合随机森林回归,AGB验证模型的决定系数(R)可达0.90,均方根误差(RMSE)、平均绝对误差(MAE)和归一化均方根误差(nRMSE)分别为71.68 g/m、51.27 g/m和11.56%。同时,RF - OOB方法的回归模型很好地解决了高AGB值在四维变量下被低估的问题。此外,随着参数维度的增加,AGB估算精度提高。本研究成果有助于实现一种快速、高效且无损获取作物AGB信息的方法,并为高通量植物表型筛选提供技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e65f/9372391/c2d758505888/fpls-13-948249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验