Department of Economics, Stanford University, Stanford CA, 94305.
Santa Fe Institute, Santa Fe, NM 87501.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2205549119. doi: 10.1073/pnas.2205549119. Epub 2022 Aug 15.
We study how communication platforms can improve social learning without censoring or fact-checking messages, when they have members who deliberately and/or inadvertently distort information. Message fidelity depends on social network depth (how many times information can be relayed) and breadth (the number of others with whom a typical user shares information). We characterize how the expected number of true minus false messages depends on breadth and depth of the network and the noise structure. Message fidelity can be improved by capping depth or, if that is not possible, limiting breadth, e.g., by capping the number of people to whom someone can forward a given message. Although caps reduce total communication, they increase the fraction of received messages that have traveled shorter distances and have had less opportunity to be altered, thereby increasing the signal-to-noise ratio.
我们研究了在不审查或核实信息的情况下,交流平台如何在成员故意和/或无意扭曲信息的情况下提高社交学习效果。信息保真度取决于社交网络的深度(信息可以被传递的次数)和广度(与典型用户共享信息的其他人的数量)。我们描述了网络的广度和深度以及噪声结构如何影响真实消息与虚假消息的预期数量之差。可以通过限制网络的深度(如果不可能,则限制网络的广度)来提高信息保真度,例如,限制某人可以转发给定消息的人数。尽管限制会减少总的信息量,但它们会增加已经传播较短距离并且有较少机会被修改的接收到的消息的比例,从而提高信号与噪声的比率。