Suppr超能文献

深度学习预测人类大脑中的 DNA 甲基化调控变体,并阐明精神疾病的遗传学。

Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders.

机构信息

Lieber Institute for Brain Development, The Johns Hopkins Medical Campus, Baltimore, MD 21287.

Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2206069119. doi: 10.1073/pnas.2206069119. Epub 2022 Aug 15.

Abstract

There is growing evidence for the role of DNA methylation (DNAm) quantitative trait loci (mQTLs) in the genetics of complex traits, including psychiatric disorders. However, due to extensive linkage disequilibrium (LD) of the genome, it is challenging to identify causal genetic variations that drive DNAm levels by population-based genetic association studies. This limits the utility of mQTLs for fine-mapping risk loci underlying psychiatric disorders identified by genome-wide association studies (GWAS). Here we present INTERACT, a deep learning model that integrates convolutional neural networks with transformer, to predict effects of genetic variations on DNAm levels at CpG sites in the human brain. We show that INTERACT-derived DNAm regulatory variants are not confounded by LD, are concentrated in regulatory genomic regions in the human brain, and are convergent with mQTL evidence from genetic association analysis. We further demonstrate that predicted DNAm regulatory variants are enriched for heritability of brain-related traits and improve polygenic risk prediction for schizophrenia across diverse ancestry samples. Finally, we applied predicted DNAm regulatory variants for fine-mapping schizophrenia GWAS risk loci to identify potential novel risk genes. Our study shows the power of a deep learning approach to identify functional regulatory variants that may elucidate the genetic basis of complex traits.

摘要

越来越多的证据表明,DNA 甲基化(DNAm)数量性状基因座(mQTL)在复杂性状的遗传学中起作用,包括精神疾病。然而,由于基因组的广泛连锁不平衡(LD),通过基于人群的遗传关联研究来识别导致 DNAm 水平的因果遗传变异具有挑战性。这限制了 mQTL 用于精细映射全基因组关联研究(GWAS)确定的精神疾病风险基因座的用途。在这里,我们提出了 INTERACT,这是一种深度学习模型,它将卷积神经网络与转换器集成在一起,以预测遗传变异对人类大脑中 CpG 位点的 DNAm 水平的影响。我们表明,INTERACT 衍生的 DNAm 调节变体不受 LD 的影响,集中在人类大脑的调节基因组区域,并且与遗传关联分析中的 mQTL 证据一致。我们进一步证明,预测的 DNAm 调节变体与大脑相关特征的遗传力富集,并改善了来自不同祖先样本的精神分裂症的多基因风险预测。最后,我们应用预测的 DNAm 调节变体来精细映射精神分裂症 GWAS 风险基因座,以确定潜在的新风险基因。我们的研究表明,深度学习方法在识别可能阐明复杂性状遗传基础的功能调节变体方面具有强大的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56c5/9407663/6faed39fb370/pnas.2206069119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验