Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
Environ Sci Technol. 2022 Sep 6;56(17):11931-11951. doi: 10.1021/acs.est.2c02371. Epub 2022 Aug 15.
Hydrogen gas (H) is an attractive fuel carrier due to its high specific enthalpy; moreover, it is a clean source of energy because in the combustion reaction with oxygen (O) it produces water as the only byproduct. The microbial electrolysis cell (MEC) is a promising technology for producing H from simple or complex organics present in wastewater and solid wastes. Methanogens and non-archaeal methane (CH)-producing microorganisms (NAMPMs) often grow in the MECs and lead to rapid conversion of produced H to CH. Moreover, non-archaeal methane production (NAMP) catalyzed by nitrogenase of photosynthetic bacteria was always overlooked. Thus, suppression of CH production is required to enhance H yield and production rate. This review comprehensively addresses the principles and current state-of-the-art technologies for suppressing methanogenesis and NAMP in MECs. Noteworthy, specific strategies aimed at the inhibition of methanogenic enzymes and nitrogenase could be a more direct approach than physical and chemical strategies for repressing the growth of methanogenic archaea. In-depth studies on the multiomics of CH metabolism can possibly provide insights into sustainable and efficient approaches for suppressing metabolic pathways of methanogenesis and NAMP. The main objective of this review is to highlight key concepts, directions, and challenges related to boosting H generation by suppressing CH production in MECs. Finally, perspectives are briefly outlined to guide and advance the future direction of MECs for production of high-purity H based on genetic and metabolic engineering and on the interspecific interactions.
氢气(H)因其高比焓而成为一种有吸引力的燃料载体;此外,它是一种清洁能源,因为在与氧气(O)的燃烧反应中,它只产生水作为唯一的副产品。微生物电解池(MEC)是一种从废水中存在的简单或复杂有机物生产 H 的有前途的技术,以及固体废物。产甲烷菌和非古菌甲烷(CH)产生微生物(NAMPMs)通常在 MEC 中生长,导致产生的 H 迅速转化为 CH。此外,光合细菌固氮酶催化的非古菌甲烷生产(NAMP)总是被忽视。因此,需要抑制 CH 生成以提高 H 产量和生产速率。本综述全面介绍了抑制 MEC 中产甲烷作用和 NAMP 的原理和最新技术。值得注意的是,针对甲烷生成酶和固氮酶的抑制的具体策略可能比物理和化学策略更直接地抑制产甲烷古菌的生长。对 CH 代谢的多组学进行深入研究,可能为抑制产甲烷作用和 NAMP 的代谢途径提供可持续和有效的方法。本综述的主要目的是强调通过抑制 MEC 中的 CH 生成来提高 H 生成的关键概念、方向和挑战。最后,简要概述了前景,以指导和推进基于遗传和代谢工程以及种间相互作用的基于生产高纯 H 的 MEC 的未来方向。