Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland.
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
J Am Chem Soc. 2022 Aug 24;144(33):15020-15025. doi: 10.1021/jacs.2c06252. Epub 2022 Aug 15.
The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, XMo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of Mo chemical shift tensors extracted from solid-state Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking Mo chemical shifts to reactivity. In particular, the Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.
最活跃的炔烃复分解催化剂依赖于明确的钼烷基化物,XMo≡CR(X = OR),特别是最近开发的带有硅醇盐配体的伞形催化剂家族。为了了解催化剂反应性模式,人们进行了最近的研究,结果表明 NMR 化学位移是一种强大的描述符,尽管以前的研究大多集中在基于配体的 NMR 描述符上。在这里,我们在炔烃复分解的背景下表明,钼化学位移张量编码了这些催化剂电子结构的详细信息。通过对从固态 Mo NMR 光谱中提取的 Mo 化学位移张量进行第一性原理计算的分析表明,化学位移值与 HOMO 和 LUMO 的能量之间存在直接联系,这两个分子轨道涉及关键的[2+2]-环加成步骤,从而将钼化学位移与反应性联系起来。特别是,钼化学位移由配体的电负性(σ-给电子)和通过 Mo-O π 相互作用的电子离域驱动,从而解释了硅醇盐伞形催化剂的反应性模式。这些结果进一步激发了对过渡金属 NMR 特征及其与电子结构和反应性关系的探索。