Gordon Christopher P, Copéret Christophe
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.
Angew Chem Int Ed Engl. 2020 Apr 27;59(18):7035-7041. doi: 10.1002/anie.201915557. Epub 2020 Mar 13.
The homologation of alkanes via alkane metathesis is catalyzed at low temperatures (150 °C) by the silica-supported species (≡SiO)WMe and (≡SiO)TaMe , while (≡SiO)TaMe Cp* is inactive. The contrasting reactivity is paralleled by differences in the C NMR signature; the former display significantly more deshielded isotropic chemical shifts (δ ) and almost axially symmetric chemical shift tensors, similar to what is observed in their molecular precursors TaMe and WMe . Analysis of the chemical shift tensors reveals the presence of a triple-bond character in their metal-carbon (formally single) bond. This electronic structure is reflected in their propensity to generate alkylidynes and to participate in alkane metathesis, further supporting the role of alkylidynes as key reaction intermediates. This study establishes chemical shift as a descriptor to identify potential alkane metathesis catalysts.
通过烷烃复分解反应实现的烷烃同系化反应在低温(150 °C)下由二氧化硅负载的物种(≡SiO)WMe和(≡SiO)TaMe催化,而(≡SiO)TaMe Cp* 则无活性。这种截然不同的反应活性与碳核磁共振特征的差异相对应;前者显示出明显更多的去屏蔽各向同性化学位移(δ)以及几乎轴向对称的化学位移张量,这与在它们的分子前体TaMe和WMe中观察到的情况类似。对化学位移张量的分析揭示了它们的金属 - 碳(形式上为单键)键中存在三键特征。这种电子结构反映在它们生成亚烷基炔以及参与烷烃复分解反应的倾向中,进一步支持了亚烷基炔作为关键反应中间体的作用。这项研究确立了化学位移作为识别潜在烷烃复分解催化剂的一个描述符。