Suppr超能文献

使用脉冲磁场精确控制流动电极电容去离子中的电荷渗流网络。

Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field.

机构信息

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China.

Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

出版信息

Water Res. 2022 Aug 15;222:118963. doi: 10.1016/j.watres.2022.118963. Epub 2022 Aug 9.

Abstract

Magnetic field is a simple and powerful means that enables controlled the transport of electrode particles in flow electrode capacitive deionization (FCDI). However, the magnetic particles are easily stripped from hybrid suspension electrodes and the precise manipulation of the charge percolation network remains challenging. In this study, a programmable magnetic field was introduced into the FCDI system to enhance the desalination performance and operational stability of magnetic FCDI, with core-shell magnetic carbon (MC) used as an alternative electrode additive. The results showed that the pulsed magnetic field (PMF) was more effective in enhancing the average salt removal rate (ASRR) compared to the constant magnetic field (CMF), with 51.6% and 67.7% enhancement, respectively, compared to the magnetic field-free condition. The outstanding advantage of the PMF lies in the enhancement in the trapping and mediating effects in the switching magnetic field, which keeps the concentration of the electrode particles near the current collector at a high level and greatly facilitates electron transport. In long-term operation (20,000 cycles), the pulsed magnetic FCDI achieved a stable desalinating rate of 0.4-0.68 μmol min cm and a charge efficiency of >96%. In brief, our study introduces a new approach for the precise manipulation of charge percolation networks of the suspension electrodes and provides insight into the charging mechanism of the magnetic FCDI.

摘要

磁场是一种简单而强大的手段,可以控制电极颗粒在流动电极电容去离子(FCDI)中的传输。然而,磁性颗粒很容易从混合悬浮电极中剥落,并且精确控制电荷渗流网络仍然具有挑战性。在这项研究中,将可编程磁场引入 FCDI 系统中,以增强磁性 FCDI 的脱盐性能和运行稳定性,使用核壳磁性碳(MC)作为替代电极添加剂。结果表明,与恒磁场(CMF)相比,脉冲磁场(PMF)更有效地增强了平均盐去除率(ASRR),分别比无磁场条件提高了 51.6%和 67.7%。PMF 的突出优点在于在切换磁场中增强了捕获和介导作用,使电极颗粒在集流器附近的浓度保持在较高水平,极大地促进了电子传输。在长期运行(20,000 个循环)中,脉冲磁 FCDI 实现了稳定的脱盐率为 0.4-0.68 μmol min cm 和电荷效率>96%。总之,我们的研究为悬浮电极的电荷渗流网络的精确控制引入了一种新方法,并深入了解了磁性 FCDI 的充电机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验