Suppr超能文献

基于层次化变分图池化的多元时间序列分类。

Multivariate time-series classification with hierarchical variational graph pooling.

机构信息

School of Big Data and Software Engineering, Chongqing University, Chongqing, 401331, China; College of Energy Engineering, Zhejiang University, Zhejiang, 310027, China.

School of Big Data and Software Engineering, Chongqing University, Chongqing, 401331, China; College of Energy Engineering, Zhejiang University, Zhejiang, 310027, China; Department of Computer Science, University of California, Los Angeles, CA 90095, USA.

出版信息

Neural Netw. 2022 Oct;154:481-490. doi: 10.1016/j.neunet.2022.07.032. Epub 2022 Aug 2.

Abstract

In recent years, multivariate time-series classification (MTSC) has attracted considerable attention owing to the advancement of sensing technology. Existing deep-learning-based MTSC techniques, which mostly rely on convolutional or recurrent neural networks, focus primarily on the temporal dependency of a single time series. Based on this, complex pairwise dependencies among multivariate variables can be better described using advanced graph methods, where each variable is regarded as a node in the graph, and their dependencies are regarded as edges. Furthermore, current spatial-temporal modeling (e.g., graph classification) methodologies based on graph neural networks (GNNs) are inherently flat and cannot hierarchically aggregate node information. To address these limitations, we propose a novel graph-pooling-based framework, MTPool, to obtain an expressive global representation of MTS. We first convert MTS slices into graphs using the interactions of variables via a graph structure learning module and obtain the spatial-temporal graph node features via a temporal convolutional module. To obtain global graph-level representation, we design an "encoder-decoder"-based variational graph pooling module to create adaptive centroids for cluster assignments. Then, we combine GNNs and our proposed variational graph pooling layers for joint graph representation learning and graph coarsening, after which the graph is progressively coarsened to one node. Finally, a differentiable classifier uses this coarsened representation to obtain the final predicted class. Experiments on ten benchmark datasets showed that MTPool outperforms state-of-the-art strategies in the MTSC task.

摘要

近年来,由于传感技术的进步,多元时间序列分类 (MTSC) 引起了相当大的关注。现有的基于深度学习的 MTSC 技术主要依赖于卷积或循环神经网络,主要关注单个时间序列的时间依赖性。在此基础上,使用先进的图方法可以更好地描述多元变量之间的复杂成对依赖关系,其中每个变量都被视为图中的一个节点,它们的依赖关系被视为边。此外,目前基于图神经网络 (GNN) 的时空建模(例如图分类)方法本质上是平面的,无法分层聚合节点信息。为了解决这些限制,我们提出了一种新的基于图池化的框架 MTPool,以获得 MTS 的表达全局表示。我们首先使用图结构学习模块通过变量的相互作用将 MTS 切片转换为图,并通过时间卷积模块获得时空图节点特征。为了获得全局图级表示,我们设计了一个基于“编码器-解码器”的变分图池化模块,为聚类分配创建自适应质心。然后,我们结合 GNN 和我们提出的变分图池化层进行联合图表示学习和图细化,然后逐步将图细化为一个节点。最后,一个可区分的分类器使用这个细化的表示来获得最终的预测类。在十个基准数据集上的实验表明,MTPool 在 MTSC 任务中优于最先进的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验