Suppr超能文献

一种基于深度学习的新型快速千伏切换双能 CT 技术:用于无创性评估肝纤维化的应用。

A novel fast kilovoltage switching dual-energy computed tomography technique with deep learning: Utility for non-invasive assessments of liver fibrosis.

机构信息

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

出版信息

Eur J Radiol. 2022 Oct;155:110461. doi: 10.1016/j.ejrad.2022.110461. Epub 2022 Aug 6.

Abstract

PURPOSE

To investigate whether the iodine density of liver parenchyma in the equilibrium phase and extracellular volume fraction (ECV) measured by deep learning-based spectral computed tomography (CT) can enable noninvasive liver fibrosis staging.

METHOD

We retrospectively analyzed 63 patients who underwent dynamic CT using deep learning-based spectral CT before a hepatectomy or liver transplantation. The iodine densities of the liver parenchyma (I-liver) and abdominal aorta (I-aorta) were independently measured by two radiologists using iodine density images at the equilibrium phase. The iodine-density ratio (I-ratio: I-liver/I-aorta) and CT-ECV were calculated. Spearman's rank correlation analysis was used to evaluate the relationship between the I-ratio or CT-ECV and liver fibrosis stage, and receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performances of the I-ratio and CT-ECV.

RESULTS

The I-ratio and CT-ECV showed significant positive correlations with liver fibrosis stage (ρ = 0.648, p < 0.0001 and ρ = 0.723, p < 0.0001, respectively). The areas under the ROC curve for the CT-ECV were 0.882 (F0 vs ≥ F1), 0.873 (≤F1 vs ≥ F2), 0.848 (≤F2 vs ≥ F3), and 0.891 (≤F3 vs F4).

CONCLUSIONS

Deep learning-based spectral CT may be useful for noninvasive assessments of liver fibrosis.

摘要

目的

研究基于深度学习的能谱 CT 测量的肝实质平衡期碘密度和细胞外容积分数(ECV)是否能实现肝纤维化的无创分期。

方法

我们回顾性分析了 63 例在肝切除或肝移植前行基于深度学习的能谱 CT 动态增强扫描的患者。由两位放射科医生分别使用碘密度图像在平衡期独立测量肝实质(I-liver)和腹主动脉(I-aorta)的碘密度。计算碘密度比(I-ratio:I-liver/I-aorta)和 CT-ECV。采用 Spearman 秩相关分析评估 I-ratio 或 CT-ECV 与肝纤维化分期的关系,采用受试者工作特征(ROC)分析评估 I-ratio 和 CT-ECV 的诊断性能。

结果

I-ratio 和 CT-ECV 与肝纤维化分期均呈显著正相关(ρ=0.648,p<0.0001 和 ρ=0.723,p<0.0001)。CT-ECV 的 ROC 曲线下面积分别为 0.882(F0 与≥F1)、0.873(≤F1 与≥F2)、0.848(≤F2 与≥F3)和 0.891(≤F3 与 F4)。

结论

基于深度学习的能谱 CT 可能有助于无创评估肝纤维化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验