Suppr超能文献

在CsPbBr/硫掺杂石墨相氮化碳超薄纳米片型异质结中构建内置电场用于二氧化碳光还原

Constructing built-in electric field within CsPbBr/sulfur doped graphitic carbon nitride ultra-thin nanosheet step-scheme heterojunction for carbon dioxide photoreduction.

作者信息

Zhao Tianyu, Li Deyang, Zhang Yiyan, Chen Guanying

机构信息

State Key Laboratory of Urban Water Resource and Environment & MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, 150001 Harbin, People's Republic of China.

State Key Laboratory of Urban Water Resource and Environment & MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, 150001 Harbin, People's Republic of China.

出版信息

J Colloid Interface Sci. 2022 Dec 15;628(Pt A):966-974. doi: 10.1016/j.jcis.2022.08.008. Epub 2022 Aug 3.

Abstract

Lead halide perovskites are promising for photocatalysis due to their excellent optoelectronic properties, high extinction coefficients, and long electron-hole diffusion lengths. However, severe recombination of photogenerated carriers limits their photocatalytic activity. Herein, we describe a perovskite-based step-scheme (S-scheme) heterojunction by interfacing CsPbBr perovskite nanocrystals with sulfur (S) doped graphitic carbon nitride (g-CN) ultrathin nanosheet. The formation of S-scheme heterojunction was substantiated by in-situ x-ray photoelectron spectra, showing a negative shift for Cs 1s, Pb 4f, and Br 3d binding energy in CsPbBr, while a positive shift for C 1s, N 1s, and S 2p in S-doped g-CN upon light irradiation. Moreover, alignment of Fermi levels in both semiconductors results in constructing a built-in electric field in the heterojunction, which enhances S-scheme electron transfer from g-CN to CsPbBr, favorable for electron (CsPbBr) and hole (g-CN) separation for enhanced carbon dioxide (CO) photoreduction. Indeed, compared with CsPbBr, the developed CsPbBr/S doped g-CN composite showed a ∼16-fold improvement in the photocatalytic CO reduction rate (∼83.6 μmol h g), thus holding great potential for photocatalysis applications in environmental and energy fields.

摘要

卤化铅钙钛矿因其优异的光电性能、高消光系数和长的电子-空穴扩散长度而在光催化方面具有广阔前景。然而,光生载流子的严重复合限制了它们的光催化活性。在此,我们通过将CsPbBr钙钛矿纳米晶体与硫(S)掺杂的石墨相氮化碳(g-CN)超薄纳米片相连接,描述了一种基于钙钛矿的阶梯型(S型)异质结。原位X射线光电子能谱证实了S型异质结的形成,结果显示,光照下CsPbBr中Cs 1s、Pb 4f和Br 3d的结合能发生负移,而S掺杂的g-CN中C 1s、N 1s和S 2p的结合能发生正移。此外,两种半导体中费米能级的对齐导致在异质结中构建了一个内建电场,这增强了S型电子从g-CN向CsPbBr的转移,有利于电子(CsPbBr)和空穴(g-CN)的分离,从而增强二氧化碳(CO)的光还原。实际上,与CsPbBr相比,所制备的CsPbBr/S掺杂g-CN复合材料的光催化CO还原速率提高了约16倍(约83.6 μmol h g),因此在环境和能源领域的光催化应用中具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验