Suppr超能文献

一种基于机器学习的方法,用于利用年龄和血脂参数计算低密度脂蛋白胆固醇。

A machine learning-based approach for low-density lipoprotein cholesterol calculation using age, and lipid parameters.

作者信息

Fan Gaowei, Zhang Shunli, Wu Qisheng, Song Yan, Jia Anqi, Li Di, Yue Yuhong, Wang Qingtao

机构信息

Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

Division of Pathology & Laboratory Medicine, Lu Daopei Hospital, Beijing, China.

出版信息

Clin Chim Acta. 2022 Oct 1;535:53-60. doi: 10.1016/j.cca.2022.08.007. Epub 2022 Aug 13.

Abstract

BACKGROUND

Low-density lipoprotein cholesterol (LDL-C) is a critical biomarker for cardiovascular disease. However, no consensus exists on the best method for estimating LDL-C in Chinese laboratories. This study aimed to develop a machine learning (ML) method for LDL-C estimation.

METHODS

An extensive data set of 111,448 samples were randomized into five equal subsets. ML-based equations were developed using age, sex, and lipid parameters based on five-fold cross-validation. The trained ML equations were externally validated in three different data sets. The performance of the ML equations was compared with the Friedewald, Martin/Hopkins, and Sampson equations.

RESULTS

The selected ML equations showed less bias with direct LDL-C than other LDL-C equations in the Chinese population, including those with triglycerides (TG) ≥ 400 mg / dL and LDL-C < 40 mg / dL. The performance of the ML equations was less susceptible to age. External validation showed the generalization of the ML equations.

CONCLUSIONS

This study highlights the potential of integrating sex, age, and lipid parameters into the ML equations to obtain a more robust and reliable LDL-C calculation.

摘要

背景

低密度脂蛋白胆固醇(LDL-C)是心血管疾病的关键生物标志物。然而,中国实验室中估算LDL-C的最佳方法尚无共识。本研究旨在开发一种用于估算LDL-C的机器学习(ML)方法。

方法

将111448个样本的广泛数据集随机分为五个相等的子集。基于年龄、性别和脂质参数,采用五折交叉验证法建立基于ML的方程。在三个不同的数据集中对训练好的ML方程进行外部验证。将ML方程的性能与Friedewald、Martin/Hopkins和Sampson方程进行比较。

结果

在中国人中,所选的ML方程与直接LDL-C相比,偏差小于其他LDL-C方程,包括甘油三酯(TG)≥400mg/dL且LDL-C<40mg/dL的人群。ML方程的性能受年龄影响较小。外部验证显示了ML方程的通用性。

结论

本研究强调了将性别、年龄和脂质参数整合到ML方程中以获得更稳健、可靠的LDL-C计算方法的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验