Yu Fei, Lin Tiejun, An Yunlei, Gong Kun, Wang Xinxing, Sun Yuhan, Zhong Liangshu
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Chem Commun (Camb). 2022 Aug 30;58(70):9712-9727. doi: 10.1039/d2cc03048a.
Syngas conversion provides an important platform for efficient utilization of various carbon-containing resources such as coal, natural gas, biomass, solid waste and even CO. Various value-added fuels and chemicals including paraffins, olefins and alcohols can be directly obtained from syngas conversion the Fischer-Tropsch Synthesis (FTS) route. However, the product selectivity control still remains a grand challenge for FTS due to the limitation of Anderson-Schulz-Flory (ASF) distribution. Our previous works showed that, under moderate reaction conditions, CoC nanoprisms with exposed (101) and (020) facets can directly convert syngas to olefins with low methane and high olefin selectivity, breaking the limitation of ASF. The application of CoC-based nanocatalysts unlocks the potential of the Fischer-Tropsch process for producing olefins. In this feature article, we summarized the recent advances in developing highly efficient CoC-based nanocatalysts and reaction pathways for direct syngas conversion to olefins the Fischer-Tropsch to olefin (FTO) reaction. We mainly focused on the following aspects: the formation mechanism of CoC, nanoeffects of CoC-based FTO catalysts, morphology control of CoC nanostructures, and the effects of promoters, supports and reactors on the catalytic performance. From the viewpoint of carbon utilization efficiency, we presented the recent efforts in decreasing the CO selectivity for FTO reactions. In addition, the attempt to expand the target products to aromatics by coupling CoC-based FTO catalysts and H-ZSM-5 zeolites was also made. In the end, future prospects for CoC-based nanocatalysts for selective syngas conversion were proposed.
合成气转化为高效利用各种含碳资源(如煤炭、天然气、生物质、固体废弃物甚至一氧化碳)提供了一个重要平台。通过费托合成(FTS)路线,可直接从合成气转化中获得包括石蜡、烯烃和醇类在内的各种增值燃料和化学品。然而,由于安德森-舒尔茨-弗洛里(ASF)分布的限制,产物选择性控制仍是费托合成面临的重大挑战。我们之前的研究表明,在适度的反应条件下,具有暴露的(101)和(020)晶面的CoC纳米棱柱能够将合成气直接转化为烯烃,具有低甲烷和高烯烃选择性,突破了ASF分布的限制。基于CoC的纳米催化剂的应用开启了费托工艺生产烯烃的潜力。在这篇专题文章中,我们总结了开发高效的基于CoC的纳米催化剂以及将合成气直接转化为烯烃(即费托制烯烃(FTO)反应)的反应途径的最新进展。我们主要关注以下几个方面:CoC的形成机理、基于CoC的FTO催化剂的纳米效应、CoC纳米结构的形貌控制,以及助剂、载体和反应器对催化性能的影响。从碳利用效率的角度出发,我们介绍了近期在降低FTO反应中CO选择性方面所做的努力。此外,还尝试通过将基于CoC的FTO催化剂与H-ZSM-5沸石耦合,将目标产物扩展到芳烃。最后,我们提出了基于CoC的纳米催化剂用于选择性合成气转化的未来前景。