Suppr超能文献

印度太阳能位置人工智能数据集。

An Artificial Intelligence Dataset for Solar Energy Locations in India.

机构信息

Microsoft AI for Good Research Lab, Redmond, WA, USA.

Forum for the Future, New Delhi, India.

出版信息

Sci Data. 2022 Aug 16;9(1):497. doi: 10.1038/s41597-022-01499-9.

Abstract

Rapid development of renewable energy sources, particularly solar photovoltaics (PV), is critical to mitigate climate change. As a result, India has set ambitious goals to install 500 gigawatts of solar energy capacity by 2030. Given the large footprint projected to meet renewables energy targets, the potential for land use conflicts over environmental values is high. To expedite development of solar energy, land use planners will need access to up-to-date and accurate geo-spatial information of PV infrastructure. In this work, we developed a spatially explicit machine learning model to map utility-scale solar projects across India using freely available satellite imagery with a mean accuracy of 92%. Our model predictions were validated by human experts to obtain a dataset of 1363 solar PV farms. Using this dataset, we measure the solar footprint across India and quantified the degree of landcover modification associated with the development of PV infrastructure. Our analysis indicates that over 74% of solar development In India was built on landcover types that have natural ecosystem preservation, or agricultural value.

摘要

可再生能源,尤其是太阳能光伏(PV)的快速发展对于缓解气候变化至关重要。因此,印度设定了到 2030 年安装 500 吉瓦太阳能容量的宏伟目标。鉴于为了实现可再生能源目标而预计的大面积土地使用,环境价值的土地使用冲突的可能性很高。为了加快太阳能的发展,土地使用规划者将需要获取最新和准确的光伏基础设施地理空间信息。在这项工作中,我们开发了一种空间明确的机器学习模型,利用免费提供的卫星图像在印度各地绘制公用规模的太阳能项目,平均准确率为 92%。我们的模型预测由人类专家进行验证,以获得 1363 个太阳能光伏农场的数据集。使用这个数据集,我们测量了印度各地的太阳能足迹,并量化了与光伏基础设施发展相关的土地覆盖变化程度。我们的分析表明,印度超过 74%的太阳能开发是在具有自然生态保护或农业价值的土地覆盖类型上进行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4437/9381711/23fa734a6dba/41597_2022_1499_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验