Diffendorfer Jay E, Sergi Brian, Lopez Anthony, Williams Travis, Gleason Michael, Ancona Zach, Cole Wesley
United States Geological Survey, Geosciences and Environmental Change Science Center, MS 980, Denver, CO, 80225, USA.
National Renewable Energy Laboratory, Golden, CO, USA.
Sci Total Environ. 2024 Oct 15;947:173872. doi: 10.1016/j.scitotenv.2024.173872. Epub 2024 Jun 9.
Projections for deep decarbonization require large amounts of solar energy, which may compete with other land uses such as agriculture, urbanization, and conservation of natural lands. Existing capacity expansion models do not integrate land use land cover change (LULC) dynamics into projections. We explored the interaction between projected LULC, solar photovoltaic (PV) deployment, and solar impacts on natural lands and croplands by integrating projections of LULC with a model that can project future deployment of solar PV with high spatial resolution for the conterminous United States. We used scenarios of LULC projections from the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios from 2010 to 2050 and two electricity grid scenarios to model future PV deployment and compared those results against a baseline that held 2010 land cover constant through 2050. Though solar PV's overall technical potential was minimally impacted by LULC scenarios, deployed PV varied by -16.5 to 11.6 % in 2050 from the baseline scenario. Total land requirements for projected PV were similar to other studies, but measures of PV impacts on natural systems depended on the underlying land change dynamics occurring in a scenario. The solar PV deployed through 2050 resulted in 1.1 %-2.4 % of croplands and 0.3 %-0.7 % of natural lands being converted to PV. However, the deepest understanding of PV impacts and interactions with land cover emerged when the complete net gains and losses from all land cover change dynamics, including PV, were integrated. For example, one of the four LULC projections allows for high solar development and a net gain in natural lands, even though PV drives a larger percentage of natural land conversion. This paper shows that integrating land cover change dynamics with energy expansion models generates new insights into trade offs between decarbonization, impacts of renewables, and ongoing land cover change.
深度脱碳的预测需要大量太阳能,这可能会与其他土地用途产生竞争,如农业、城市化以及自然土地保护。现有的容量扩展模型并未将土地利用土地覆盖变化(LULC)动态纳入预测中。我们通过将LULC预测与一个能够以高空间分辨率预测美国本土未来太阳能光伏(PV)部署的模型相结合,探索了预测的LULC、太阳能光伏部署以及太阳能对自然土地和农田的影响之间的相互作用。我们使用了政府间气候变化专门委员会《排放情景特别报告》中2010年至2050年的LULC预测情景以及两种电网情景来模拟未来的光伏部署,并将这些结果与一个在2050年保持2010年土地覆盖不变的基线进行比较。尽管太阳能光伏的总体技术潜力受LULC情景的影响最小,但到2050年,已部署的光伏与基线情景相比变化了-16.5%至11.6%。预测的光伏所需土地总量与其他研究相似,但光伏对自然系统影响的衡量取决于情景中发生的潜在土地变化动态。到2050年部署的太阳能光伏导致1.1% - 2.4%的农田和0.3% - 0.7%的自然土地转变为光伏用地。然而,当整合包括光伏在内的所有土地覆盖变化动态所产生的完整净收益和损失时,对光伏影响以及与土地覆盖相互作用的理解最为深刻。例如,四个LULC预测情景之一允许进行大规模太阳能开发并实现自然土地净增益,尽管光伏导致自然土地转变的比例更大。本文表明,将土地覆盖变化动态与能源扩展模型相结合,能为脱碳、可再生能源影响和持续的土地覆盖变化之间的权衡带来新的见解。