Hashemi E, Poursalehi R, Delavari H
Department of Materials Engineering, Tarbiat Modares University, Tehran, 14115-143, Iran.
Nanoscale Res Lett. 2022 Aug 17;17(1):75. doi: 10.1186/s11671-022-03714-3.
In this research, a novel ternary multi-heterojunction BiO/BiOCO/(BiO)CO(OH) photocatalyst is fabricated via submerged DC electrical arc discharge in urea solution. FT-IR, XRD, EDS and PL results confirm the formation of BiO/BiOCO/(BiO)CO(OH) multi-heterojunction. Formation of nanoflake morphology is revealed by FE-SEM and TEM images. The optical properties and intense absorption edge of BiO/BiOCO/(BiO)CO(OH) reveal the proper visible light absorbing ability. The photocatalytic performance of the sample is investigated via the degradation of methylene orange (MeO) and rhodamine B (RB) under visible light irradiation. The photocatalytic activity of BiO/BiOCO/(BiO)CO(OH) is compared with the synthesized sample in water, BiO/Bi/Bi(OH) which exhibits much higher photocatalytic activity. Also, the stable photodegradation efficiency of BiO/BiOCO/(BiO)CO(OH) after four cycles reveals the long-term stability and reusability of the synthesized photocatalyst. The PL intensity of BiO/BiOCO/(BiO)CO(OH) shows an improved separation rate of electron-hole pairs and so enhanced photocatalytic performance. The improved photocatalytic activity can be ascribed to the formation of multi-heterojunctions, flake morphology and intrinsic internal electric field (IEF). Multi-heterojunction nanoflakes enhance the absorbance of visible light and facilitate the separation and transport of photogenerated electron holes through large IEF. Our work offers an effective method for the production of innovative bismuth-based photocatalyst with excellent prospects for the degradation of environmental pollutants and light harvesting for renewable energy generation under visible light.
在本研究中,通过在尿素溶液中进行浸没式直流电弧放电制备了一种新型三元多异质结BiO/BiOCO/(BiO)CO(OH)光催化剂。傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、能谱分析(EDS)和光致发光(PL)结果证实了BiO/BiOCO/(BiO)CO(OH)多异质结的形成。场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)图像揭示了纳米片状形貌的形成。BiO/BiOCO/(BiO)CO(OH)的光学性质和强烈的吸收边表明其具有良好的可见光吸收能力。通过在可见光照射下对亚甲基橙(MeO)和罗丹明B(RB)的降解来研究该样品的光催化性能。将BiO/BiOCO/(BiO)CO(OH)的光催化活性与在水中合成的样品BiO/Bi/Bi(OH)进行比较,后者表现出更高的光催化活性。此外,BiO/BiOCO/(BiO)CO(OH)在四个循环后的稳定光降解效率揭示了合成光催化剂的长期稳定性和可重复使用性。BiO/BiOCO/(BiO)CO(OH)的PL强度表明电子-空穴对的分离率提高,从而增强了光催化性能。光催化活性的提高可归因于多异质结的形成、片状形貌和固有内建电场(IEF)。多异质结纳米片增强了可见光的吸收,并通过大的IEF促进了光生电子空穴的分离和传输。我们的工作为生产具有创新型铋基光催化剂提供了一种有效方法,该催化剂在降解环境污染物和可见光下收集可再生能源方面具有良好的前景。