Suppr超能文献

多晶型BiO的制备、微观结构及光催化性能综述。

A review on the preparation, microstructure, and photocatalytic performance of BiO in polymorphs.

作者信息

Zahid Abdul Hannan, Han Qiaofeng

机构信息

Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, PR China.

出版信息

Nanoscale. 2021 Nov 4;13(42):17687-17724. doi: 10.1039/d1nr03187b.

Abstract

In recent years, the semiconductor bismuth oxide (BiO) has attracted increasing attention as a potential visible-light-driven photocatalyst due to its simple composition, relatively narrow bandgap (2.2-2.8 eV), and high oxidation ability with deep valence band levels. Owing to the symmetry of its unit cell, BiO exists in more than one crystal form and exhibits phase-dependent photocatalytic properties. However, the phase-selective synthesis of BiO is a complex process, and its phase transformation usually occurs in a wide temperature range. Therefore, the development of BiO phases with a controllable microstructure and good photocatalytic properties is a great challenge. Hundreds of articles have been reported on the phase-selective synthesis and photocatalytic performance of BiO. However, an interacting and critical review has rarely been reported, and thus it is essential to fill the gap in the literature. In this review, the phase-dependent photocatalytic performance of BiO is presented in detail. The phase-selective synthesis and temperature-dependent phase stability of highly active BiO are explored. The phase junction in BiO is reviewed, and the future perspective with an outlook on contemporary challenges is provided finally.

摘要

近年来,半导体氧化铋(BiO)因其组成简单、带隙相对较窄(2.2 - 2.8 eV)以及具有较深价带能级的高氧化能力,作为一种潜在的可见光驱动光催化剂受到了越来越多的关注。由于其晶胞的对称性,BiO以多种晶体形式存在,并表现出与相相关的光催化性能。然而,BiO的相选择性合成是一个复杂的过程,其相变通常发生在较宽的温度范围内。因此,开发具有可控微观结构和良好光催化性能的BiO相是一项巨大的挑战。关于BiO的相选择性合成和光催化性能已有数百篇文章报道。然而,很少有相互关联且批判性的综述报道,因此填补文献中的这一空白至关重要。在本综述中,详细介绍了BiO与相相关的光催化性能。探索了高活性BiO的相选择性合成和温度依赖性相稳定性。对BiO中的相结进行了综述,并最终展望了当代挑战下的未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验