Gaindrik Polina, Baul Upayan, Dzubiella Joachim
Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany.
Phys Rev E. 2022 Jul;106(1-1):014613. doi: 10.1103/PhysRevE.106.014613.
We introduce a model of active responsive colloids (ARCs) in which an internal degree of freedom (DoF) of a single colloidal particle is "activated" by coupling it to a different thermostat than for the translational DoFs. As for the responsive internal DoF, we consider specifically the size (diameter) of the spherical particles, which is confined by a harmonic parent potential being either entropic or energetic in nature. The ARCs interact via a repulsive Hertzian pair potential, appropriate to model hydrogels or elastic colloids, and are studied for various densities using Brownian dynamics simulations. We tune the internal activity in the nonequilibrium steady state by scanning through a wide range of internal temperatures, both smaller ("colder") and larger ("hotter") than the translational temperature. The results show a rich and intriguing behavior for the emergent property distributions, colloidal pair structure, and the diffusive translational dynamics controlled by the internal activity, substantially depending on whether the internal DoF moves in an entropic or energetic potential. We discuss theoretical thermal limits and phenomenological models which can explain some of the nonequilibrium trends qualitatively. Our study indicates that particle dynamical polydispersity as well as the structure and dynamics of dense macromolecular suspensions can be vastly tuned by internal activity in terms of internal "hot" or "cold" fluctuating states.
我们引入了一种活性响应胶体(ARC)模型,其中单个胶体粒子的内部自由度(DoF)通过将其与不同于平动自由度的恒温器耦合而被“激活”。对于响应性内部自由度,我们特别考虑球形粒子的尺寸(直径),它受到本质上为熵或能量的谐振母势的限制。ARC通过适用于模拟水凝胶或弹性胶体的排斥性赫兹对势相互作用,并使用布朗动力学模拟研究了各种密度下的情况。我们通过扫描比平动温度更小(“更冷”)和更大(“更热”)的广泛内部温度范围,来调节非平衡稳态下的内部活性。结果表明,对于涌现的性质分布、胶对结构以及由内部活性控制的扩散平动动力学,存在丰富且有趣的行为,这在很大程度上取决于内部自由度是在熵势还是能量势中移动。我们讨论了理论热极限和现象学模型,它们可以定性地解释一些非平衡趋势。我们的研究表明,粒子动力学多分散性以及致密大分子悬浮液的结构和动力学可以通过内部“热”或“冷”波动状态下的内部活性进行大幅度调节。