Li Xin, Ma YuXuan, Wang DuoJia, Wang Yu, Zhao ShunCai
Data Science Research Center, Kunming University of Science and Technology, Kunming 650093, China.
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.
Phys Rev E. 2022 Jul;106(1-1):014124. doi: 10.1103/PhysRevE.106.014124.
We know that a one-dimensional (1D) modulated system can simulate 2D topological states by expanding the dimension. This scenario provides a justifiable avenue to test the dilatation of the dynamical quantum phase transition (DQPT). Through a generalized Su-Schrieffer-Heeger model, we have shown how the Loschmidt echo, Fisher zero, and Dynamical topological order parameter (DTOP) transit from one to two dimensions. Owing to the introduced pseudomomentum, the derivative of the return rate does not always capture the DQPT well, but the Fisher zero and the DTOP can be treated as faithful indicators. A topology-independent parameter will also affect the occurrence of the DQPTs for quenches inside a given phase. Moreover, a comparison with the Haldane model owning the same phase diagram implies that a pair of fixed points will lead to different critical momentum distributions, thus different robustness, further reminding us that the correspondences between the equilibrium and dynamical phases transitions are multifarious.
我们知道,一维(1D)调制系统可以通过扩展维度来模拟二维拓扑态。这种情况为测试动态量子相变(DQPT)的膨胀提供了一条合理的途径。通过一个广义的Su-Schrieffer-Heeger模型,我们展示了洛施密特回波、费舍尔零点和动态拓扑序参量(DTOP)如何从一维过渡到二维。由于引入了赝动量,返回率的导数并不总能很好地捕捉DQPT,但费舍尔零点和DTOP可以被视为可靠的指标。一个与拓扑无关的参数也会影响给定相内猝灭时DQPT的发生。此外,与具有相同相图的霍尔丹模型的比较表明,一对不动点会导致不同的临界动量分布,从而具有不同的鲁棒性,这进一步提醒我们平衡相变和动态相变之间的对应关系是多种多样的。