Jing Yecheng, Dong Jian-Jun, Zhang Yu-Yu, Hu Zi-Xiang
Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China.
Phys Rev Lett. 2024 May 31;132(22):220402. doi: 10.1103/PhysRevLett.132.220402.
By utilizing biorthogonal bases, we develop a comprehensive framework for studying biorthogonal dynamical quantum phase transitions in non-Hermitian systems. With the help of the previously overlooked associated state, we define the automatically normalized biorthogonal Loschmidt echo. This approach is capable of handling arbitrary non-Hermitian systems with complex eigenvalues and naturally eliminates the negative value of Loschmidt rate obtained without the biorthogonal bases. Taking the non-Hermitian Su-Schrieffer-Heeger model as a concrete example, a 1/2 change of dynamical topological order parameter in biorthogonal bases is observed which is not shown in self-normal bases. Furthermore, we discover that the periodicity of biorthogonal dynamical quantum phase transitions depends on whether the two-level subsystem at the critical momentum oscillates or reaches a steady state.
通过利用双正交基,我们开发了一个用于研究非厄米系统中双正交动力学量子相变的综合框架。借助先前被忽视的关联态,我们定义了自动归一化的双正交洛施密特回波。这种方法能够处理具有复本征值的任意非厄米系统,并且自然地消除了在没有双正交基时得到的洛施密特率的负值。以非厄米Su-Schrieffer-Heeger模型为例,我们观察到在双正交基中动力学拓扑序参量有1/2的变化,而在自归一基中并未出现这种情况。此外,我们发现双正交动力学量子相变的周期性取决于临界动量处的两能级子系统是振荡还是达到稳态。