Suppr超能文献

使用键渗流的N-菌株流行模型。

N-strain epidemic model using bond percolation.

作者信息

Mann Peter, Smith V Anne, Mitchell John B O, Dobson Simon

机构信息

School of Computer Science, University of St. Andrews, St. Andrews, Fife KY16 9SX, United Kingdom; EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom; and School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, United Kingdom.

出版信息

Phys Rev E. 2022 Jul;106(1-1):014304. doi: 10.1103/PhysRevE.106.014304.

Abstract

In this paper we examine the emergent structures of random networks that have undergone bond percolation an arbitrary, but finite, number of times. We define two types of sequential branching processes: a competitive branching process, in which each iteration performs bond percolation on the residual graph (RG) resulting from previous generations, and a collaborative branching process, where percolation is performed on the giant connected component (GCC) instead. We investigate the behavior of these models, including the expected size of the GCC for a given generation, the critical percolation probability, and other topological properties of the resulting graph structures using the analytically exact method of generating functions. We explore this model for Erdős-Renyi and scale-free random graphs. This model can be interpreted as a seasonal N-strain model of disease spreading.

摘要

在本文中,我们研究了经历任意但有限次数键渗流的随机网络的涌现结构。我们定义了两种类型的顺序分支过程:一种是竞争性分支过程,其中每次迭代都对前几代产生的剩余图(RG)进行键渗流;另一种是协作性分支过程,其中渗流是在巨型连通分量(GCC)上进行的。我们使用生成函数的解析精确方法研究这些模型的行为,包括给定代的GCC的预期大小、临界渗流概率以及所得图结构的其他拓扑性质。我们针对厄多斯 - 雷尼随机图和无标度随机图探索了该模型。该模型可以解释为疾病传播的季节性N菌株模型。

相似文献

1
N-strain epidemic model using bond percolation.使用键渗流的N-菌株流行模型。
Phys Rev E. 2022 Jul;106(1-1):014304. doi: 10.1103/PhysRevE.106.014304.
2
Symbiotic and antagonistic disease dynamics on networks using bond percolation.
Phys Rev E. 2021 Aug;104(2-1):024303. doi: 10.1103/PhysRevE.104.024303.
5
Clique percolation in random networks.随机网络中的团渗流
Phys Rev Lett. 2005 Apr 29;94(16):160202. doi: 10.1103/PhysRevLett.94.160202.
6
Statistical mechanics of high-density bond percolation.高密度键渗流的统计力学。
Phys Rev E. 2018 May;97(5-1):052119. doi: 10.1103/PhysRevE.97.052119.
8
Second look at the spread of epidemics on networks.再探网络上的流行病传播
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036113. doi: 10.1103/PhysRevE.76.036113. Epub 2007 Sep 25.
9
General and exact approach to percolation on random graphs.随机图上渗流的一般且精确的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062807. doi: 10.1103/PhysRevE.92.062807. Epub 2015 Dec 7.
10
Percolation of attack with tunable limited knowledge.具有可调有限知识的攻击渗透
Phys Rev E. 2021 Apr;103(4-1):042316. doi: 10.1103/PhysRevE.103.042316.

引用本文的文献

1
Strength and weakness of disease-induced herd immunity in networks.疾病诱导的网络群体免疫的优势与劣势
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2421460122. doi: 10.1073/pnas.2421460122. Epub 2025 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验